New Directions for Half-Life Extension of Protein Therapeutics: The Rise of Antibody Fc Domains and Fragments

2016 ◽  
Vol 17 (15) ◽  
pp. 1348-1352 ◽  
Author(s):  
Lili Wang ◽  
Tianlei Ying
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lu Shan ◽  
Nydia Van Dyk ◽  
Nantaporn Haskins ◽  
Kimberly M. Cook ◽  
Kim L. Rosenthal ◽  
...  

AbstractIn a biologic therapeutic landscape that requires versatility in targeting specificity, valency and half-life modulation, the monomeric Fc fusion platform holds exciting potential for the creation of a class of monovalent protein therapeutics that includes fusion proteins and bispecific targeting molecules. Here we report a structure-guided approach to engineer monomeric Fc molecules to adapt multiple versions of half-life extension modifications. Co-crystal structures of these monomeric Fc variants with Fc neonatal receptor (FcRn) shed light into the binding interactions that could serve as a guide for engineering the half-life of antibody Fc fragments. These engineered monomeric Fc molecules also enabled the generation of a novel monovalent bispecific molecular design, which translated the FcRn binding enhancement to improvement of in vivo serum half-life.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A668-A668
Author(s):  
Jack Lin ◽  
Sony Rocha ◽  
Kathryn Kwant ◽  
Maria Dayao ◽  
Tessie Ng ◽  
...  

BackgroundEpithelial cell adhesion molecule (EpCAM) is highly expressed in many solid tumors. However, therapeutics targeting EpCAM have had limited clinical utility or failed in clinical development likely due to the expression of EpCAM in normal tissues. For example, clinical testing of solitomab, an EpCAM-targeting T cell engager, resulted in severe dose-limiting toxicities, including elevated liver transaminases, hyperbilirubinemia, and diarrhea. Designing an EpCAM-targeting T cell engager that is only active in the tumor would expand its therapeutic window and improve its safety profile.MethodsUsing a T cell engager prodrug platform named ProTriTAC that couples therapeutic half-life extension with functional masking, we have engineered HPN601, a protease-activated EpCAM-targeting T cell engager. HPN601 is a single polypeptide with three binding domains: anti-albumin for half-life extension, anti-CD3e for T cell engagement, and anti-EpCAM for tumor cell engagement. The anti-albumin domain contains a masking moiety and a protease-cleavable linker and keeps the molecule inert outside the tumor microenvironment. Activation by tumor-associated proteases removes the anti-albumin domain along with the masking moiety to reveal a potently active drug inside the tumor. This active drug has minimal activity outside of tumor because, without an albumin binding domain, it is rapidly cleared in circulation.ResultsA humanized rodent tumor model was used to simultaneously measure anti-tumor efficacy and clinically relevant toxicity endpoints. In this model, a surrogate molecule of HPN601 was safely administered at a dose ten-fold higher than the minimal efficacious dose required for durable tumor regression. Higher doses produced toxicities including elevated ALT/AST and bilirubin, body weight loss, and evidence of tissue damage by histopathology. In contrast, a constitutively active EpCAM-targeting T cell engager could only be dosed safely up to its minimal efficacious dose. The improved safety profile of HPN601 is further supported by a toxicokinetic study in non-human primates: compared to a constitutively active EpCAM-targeting T cell engager, HPN601 had significantly attenuated cytokine production, including IFN-g, IL-2, IL-6, and IL-10.ConclusionsHPN601 is a conditionally active EpCAM-targeting T cell engager with a ten-fold improved therapeutic window compared to a constitutively active EpCAM-targeting T cell engager. An EpCAM-specific T cell engager with an improved safety profile could address unmet needs in many solid tumors and demonstrate the feasibility of using conditionally active T cell engagers to target more solid tumor antigens.Ethics ApprovalThe study was reviewed and approved by Harpoon’s Institutional Animal Care and Use Committee.


2016 ◽  
Vol 42 (05) ◽  
pp. 518-525 ◽  
Author(s):  
Erik Berntorp ◽  
Nadine Andersson

There are two main bioengineering approaches to extending the half-life of factor (F)VIII or FIX products used for hemophilia replacement therapy. These are fusion to Fc-immunoglobulin G (FVIII and FIX) or to albumin (FIX) or pegylation/glycopegylation (FVIII and FIX). Four FVIII and three FIX products are in clinical development or have recently been licensed in regions of the world. The reported half-life extension is approximately 1.5-fold for FVIII and 2.5-fold, or even longer, for FIX. Clinical trials have shown promising results with respect to extension of dose intervals and efficacy in the treatment and prevention of bleeding events. The role of these products in clinical practice has been discussed in terms of either improving convenience and adherence through prolongation of the interval between infusions or maintaining current intervals thereby increasing trough levels and the safety margin against bleeds. This review of extended half-life products addresses the possibilities and problems of their introduction in hemophilia treatment.


2015 ◽  
Vol 93 ◽  
pp. 254-259 ◽  
Author(s):  
Eric L. Schneider ◽  
Gary W. Ashley ◽  
Lieve Dillen ◽  
Bart Stoops ◽  
Nigel E. Austin ◽  
...  

2019 ◽  
Vol 153 ◽  
pp. 53-58 ◽  
Author(s):  
Yang Zong ◽  
Xiao Tan ◽  
Jingjing Xiao ◽  
Xinyu Zhang ◽  
Xiaoli Xia ◽  
...  

2012 ◽  
pp. 39-61 ◽  
Author(s):  
Simona Jevševar ◽  
Menči Kunstelj
Keyword(s):  

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Anna M. Sobieraj ◽  
Markus Huemer ◽  
Léa V. Zinsli ◽  
Susanne Meile ◽  
Anja P. Keller ◽  
...  

ABSTRACT Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections. IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.


Sign in / Sign up

Export Citation Format

Share Document