scholarly journals Engineering of Long-Circulating Peptidoglycan Hydrolases Enables Efficient Treatment of Systemic Staphylococcus aureus Infection

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Anna M. Sobieraj ◽  
Markus Huemer ◽  
Léa V. Zinsli ◽  
Susanne Meile ◽  
Anja P. Keller ◽  
...  

ABSTRACT Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections. IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.

2014 ◽  
Vol 59 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Geoffrey W. Birrell ◽  
Marina Chavchich ◽  
Arba L. Ager ◽  
Hong-Ming Shieh ◽  
Gavin D. Heffernan ◽  
...  

ABSTRACT4-(tert-Butyl)-2-((tert-butylamino)methyl)-6-(6-(trifluoromethyl)pyridin-3-yl)-phenol (JPC-2997) is a new aminomethylphenol compound that is highly activein vitroagainst the chloroquine-sensitive D6, the chloroquine-resistant W2, and the multidrug-resistant TM90-C2BPlasmodium falciparumlines, with 50% inhibitory concentrations (IC50s) ranging from 7 nM to 34 nM. JPC-2997 is >2,500 times less cytotoxic (IC50s > 35 μM) to human (HepG2 and HEK293) and rodent (BHK) cell lines than the D6 parasite line. In comparison to the chemically related WR-194,965, a drug that had advanced to clinical studies, JPC-2997 was 2-fold more activein vitroagainstP. falciparumlines and 3-fold less cytotoxic. The compound possesses potentin vivosuppression activity againstPlasmodium berghei, with a 50% effective dose (ED50) of 0.5 mg/kg of body weight/day following oral dosing in the Peters 4-day test. The radical curative dose of JPC-2997 was remarkably low, at a total dose of 24 mg/kg, using the modified Thompson test. JPC-2997 was effective in curing threeAotusmonkeys infected with a chloroquine- and pyrimethamine-resistant strain ofPlasmodium vivaxat a dose of 20 mg/kg daily for 3 days. At the doses administered, JPC-2997 appeared to be well tolerated in mice and monkeys. Preliminary studies of JPC-2997 in mice show linear pharmacokinetics over the range 2.5 to 40 mg/kg, a low clearance of 0.22 liters/h/kg, a volume of distribution of 15.6 liters/kg, and an elimination half-life of 49.8 h. The highin vivopotency data and lengthy elimination half-life of JPC-2997 suggest that it is worthy of further preclinical assessment as a partner drug.


2012 ◽  
Vol 56 (7) ◽  
pp. 3475-3480 ◽  
Author(s):  
Sovitj Pou ◽  
Rolf W. Winter ◽  
Aaron Nilsen ◽  
Jane Xu Kelly ◽  
Yuexin Li ◽  
...  

ABSTRACTSontochin was the original chloroquine replacement drug, arising from research by Hans Andersag 2 years after chloroquine (known as “resochin” at the time) had been shelved due to the mistaken perception that it was too toxic for human use. We were surprised to find that sontochin, i.e., 3-methyl-chloroquine, retains significant activity against chloroquine-resistant strains ofPlasmodium falciparum in vitro. We prepared derivatives of sontochin, “pharmachins,” with alkyl or aryl substituents at the 3 position and with alterations to the 4-position side chain to enhance activity against drug-resistant strains. Modified with an aryl substituent in the 3 position of the 7-chloro-quinoline ring, Pharmachin 203 (PH-203) exhibits low-nanomolar 50% inhibitory concentrations (IC50s) against drug-sensitive and multidrug-resistant strains andin vivoefficacy against patent infections ofPlasmodium yoeliiin mice that is superior to chloroquine. Our findings suggest that novel 3-position aryl pharmachin derivatives have the potential for use in treating drug resistant malaria.


2014 ◽  
Vol 59 (1) ◽  
pp. 136-144 ◽  
Author(s):  
A. M. Upton ◽  
S. Cho ◽  
T. J. Yang ◽  
Y. Kim ◽  
Y. Wang ◽  
...  

ABSTRACTNitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 againstMycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidalin vitroagainst replicating and nonreplicatingMycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity againstMycobacterium tuberculosisH37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7.In vitrostudies andin vivostudies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life.In vitrostudies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependentin vivobactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Shichun Lun ◽  
David Miranda ◽  
Andre Kubler ◽  
Haidan Guo ◽  
Mariama C. Maiga ◽  
...  

ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. IMPORTANCE The global emergence of multidrug-resistant and extensively drug-resistant M. tuberculosis strains has threatened public health worldwide, yet the pipeline of new tuberculosis drugs under development remains limited. One strategy to cope with the urgent need for new antituberculosis agents is to repurpose existing, approved antibiotics. The carbapenem class of β-lactam antibiotics has been proposed as one such class of drugs. Our study identifies molecular determinants of innate resistance to β-lactam drugs in M. tuberculosis, and we demonstrate that functional loss of one of these genes enables successful treatment of M. tuberculosis with β-lactams in the mouse model.


2015 ◽  
Vol 59 (8) ◽  
pp. 5007-5009 ◽  
Author(s):  
Sandra P. McCurdy ◽  
Ronald N. Jones ◽  
Rodrigo E. Mendes ◽  
Sailaja Puttagunta ◽  
Michael W. Dunne

ABSTRACTIn over a decade (2002 to 2012) ofStaphylococcus aureussurveillance testing on 62,195 isolates, dalbavancin was demonstrated to be active against isolates that were either susceptible or nonsusceptible to daptomycin, linezolid, or tigecycline. Nearly all (99.8%) multidrug-resistant methicillin-resistantS. aureusisolates were inhibited by dalbavancin at ≤0.12 μg/ml (MIC50/90, 0.06/0.06 μg/ml), the current U.S. Food and Drug Administration (U.S. FDA) breakpoint. Overall, only 0.35% of the monitoredS. aureusisolates had a dalbavancin MIC of either 0.25 or 0.5 μg/ml (i.e., were nonsusceptible).


2018 ◽  
Vol 84 (15) ◽  
Author(s):  
Yufeng Zhang ◽  
Mengjun Cheng ◽  
Hao Zhang ◽  
Jiaxin Dai ◽  
Zhimin Guo ◽  
...  

ABSTRACT Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis. All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 μg/ml of LysGH15, and the MICs ranged from 8 μg/ml to 32 μg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 μg/ml. At a higher dose (100 μg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 μg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections. IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 μg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.


2014 ◽  
Vol 58 (11) ◽  
pp. 7010-7014 ◽  
Author(s):  
Yasuhiro Horita ◽  
Shinji Maeda ◽  
Yuko Kazumi ◽  
Norio Doi

ABSTRACTWe evaluated the antituberculosis (anti-TB) activity of five β-lactams alone or in combination with β-lactamase inhibitors against 41 clinical isolates ofMycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains. Of those, tebipenem, an oral carbapenem, showed the most potent anti-TB activity against clinical isolates, with a MIC range of 0.125 to 8 μg/ml, which is achievable in the human blood. More importantly, in the presence of clavulanate, MIC values of tebipenem declined to 2 μg/ml or less.


2019 ◽  
Vol 48 (31) ◽  
pp. 11822-11828 ◽  
Author(s):  
Payal Srivastava ◽  
Manjulika Shukla ◽  
Grace Kaul ◽  
Sidharth Chopra ◽  
Ashis K. Patra

Two curcumin conjugated ruthenium(ii) polypyridyl complexes, [Ru(NN)2(cur)](PF6) (1, 2), were systematically exploited for their antimicrobial activity in vitro and in vivo and potential selectivity against multidrug resistant S. aureus strains.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Yanan Zhao ◽  
Min Hee Lee ◽  
Padmaja Paderu ◽  
Annie Lee ◽  
Cristina Jimenez-Ortigosa ◽  
...  

ABSTRACT APX001 is a first-in-class, intravenous and orally available, broad-spectrum antifungal agent in clinical development for the treatment of life-threatening invasive fungal infections. The half-life of APX001A, the active moiety of APX001, is significantly shorter in mice than in humans (1.4 to 2.75 h in mice versus 2 to 2.5 days in humans), making the exploration of efficacy in mouse models difficult. After pretreatment with 1-aminobenzotriazole (ABT), a nonspecific cytochrome P450 inhibitor, greatly increased plasma APX001A exposure was observed in mice of different strains and of both genders. As a consequence, 26 mg/kg APX001 plus ABT sterilized kidneys in mice infected with Candida albicans, while APX001 alone at the same dose resulted in a modest burden reduction of only 0.2 log10 CFU/g, relative to the vehicle control. In the presence of ABT, 2 days of once-daily dosing with APX001 at 26 mg/kg also demonstrated significant in vivo efficacy in the treatment of Candida glabrata infections in mice. Potent kidney burden reduction was achieved in mice infected with susceptible, echinocandin-resistant, or multidrug-resistant strains. In contrast, the standard of care (micafungin) was ineffective in treating infections caused by the resistant C. glabrata isolates.


2012 ◽  
Vol 56 (10) ◽  
pp. 5142-5148 ◽  
Author(s):  
Catherine Vilchèze ◽  
William R. Jacobs

ABSTRACTThe challenges of developing new drugs to treat tuberculosis (TB) are indicated by the relatively small number of candidates entering clinical trials in the past decade. To overcome these issues, we reexamined two FDA-approved antibacterial drugs, sulfamethoxazole (SMX) and trimethoprim (TMP), for use in TB treatment. SMX and TMP inhibit folic acid biosynthesis and are used in combination to treat infections of the respiratory, urinary, and gastrointestinal tracts. The MICs of SMX and TMP, alone and in combination, were determined for drug-susceptible, multidrug-resistant (MDR), and extensively drug-resistantMycobacterium tuberculosisstrains. While TMP alone was not effective againstM. tuberculosis, the combination of TMP and SMX was bacteriostatic againstM. tuberculosis. Surprisingly, the combination of SMX and TMP was also active against a subset of MDRM. tuberculosisstrains. Treatment ofM. tuberculosiswith TMP-SMX and a first-line anti-TB drug, either isoniazid or rifampin, was bactericidal, demonstrating that the combination of TMP and SMX with isoniazid or rifampin was not antagonistic. Moreover, the addition of SMX-TMP in combination with either isoniazid or rifampin also prevented the emergence of drug resistancein vitro. In conclusion, this study further illustrates the opportunity to reevaluate the activity of TMP-SMXin vivoto prevent the emergence of drug-resistantM. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document