Comparison of Vascular Responses to Vasoconstrictors in Human Placenta in Preeclampsia between Preterm and Later Term

2020 ◽  
Vol 21 (8) ◽  
pp. 727-733
Author(s):  
Xueqin Feng ◽  
Yumeng Zhang ◽  
Jianying Tao ◽  
Likui Lu ◽  
Yingying Zhang ◽  
...  

Background: Placental blood vessels play important roles in maternal-fetal circulation. Although pathologic mechanisms of preeclampsia are unclear, it is known that placental vascular dysfunction could contribute to pregnant hypertension. However, placental micro-vessel function or dysfunction at preterm has not been investigated. Methods: Human placentas from normal and preeclamptic pregnancies at preterm and term were obtained. Placental micro-vessels were used for determining vascular tension and responses to various vasoconstrictors as well as intracellular calcium store capability. It was the first time to show vascular responses in placental arteries to angiotensin II, endothelin-1, and other vascular drugs at preterm. Results: Compared to the control, placental vascular contractile responses to angiotensin II and caffeine were significantly decreased, while placental vascular responses to KCl, endothelin-1, and bradykinin were not significantly altered in the later term group in preeclampsia. In comparison of placental micro-vessel tension between the preterm and later term, caffeine- and serotonin-induced vascular contractions were significantly weaker in the preterm than that in the later term. On the contrary, vascular response to angiotensin II was increased in the preterm preeclampsia, while KCl-, endothelin-1, and bradykinin-mediated placental vessel responses in the preterm preeclampsia were similar to that in later term preeclampsia. Conclusion: New data showed that micro-vessel responses to angiotensin II and serotonin, not endothelin- 1 or bradykinin, were significantly reduced in the human placentas at preterm, and intracellular Ca2+ store capacity was damaged too, providing important information on possible contributions of placental vascular dysfunction to pregnant hypertension.

Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 891-898 ◽  
Author(s):  
Damian G. Romero ◽  
Gaston R. Vergara ◽  
Zheng Zhu ◽  
Gina S. Covington ◽  
Maria W. Plonczynski ◽  
...  

The adrenal gland secretes several cytokines, and cytokines modulate steroid secretion by this gland. In this study, a survey of cytokine production by H295R human adrenocortical cells demonstrated that these cells secreted IL-2, IL-4, IL-8, IL-10, IL-13, and TNFα but not IL-5, IL-12, or interferon-γ. IL-8 was the IL secreted at higher concentration. IL-8 secretion, its regulation, and role in steroidogenesis were further studied. Secreted ILs and steroids were measured by ELISA in cell culture supernatant. IL-8 mRNA was quantified by real-time RT-PCR. H295R cells and human adrenal gland expressed IL-8 mRNA. Angiotensin II, potassium, endothelin-1, IL-1α, IL-1β, TNFα, and Escherichia coli lipopolysaccharide dose-dependently increase IL-8 secretion by H295R cells after 24 h incubation. IL-6 had no effect on IL-8 secretion. Angiotensin II time-dependently increased IL-8 secretion by H295R cells up to 48 h. Angiotensin II caused a biphasic increase in IL-8 mRNA expression with a peak 6 h after stimulation. TNFα synergized angiotensin II, potassium, and IL-1α-mediated IL-8 secretion. IL-8 did not modify aldosterone or cortisol secretion by H295R cells under basal or stimulated (angiotensin II or potassium) conditions. In conclusion, it is demonstrated for the first time that human adrenal cells expressed and secreted IL-8 under the regulation of angiotensin II, potassium, endothelin-1, and immune peptides. Adrenal-secreted IL-8 is one point of convergence between the adrenal gland and the immune system and may have relevance in physiological and pathophysiological conditions associated with increased levels of aldosterone secretagogues and the immune system.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Samira Choopani ◽  
Mehdi Nematbakhsh

Backgrounds. High blood pressure is one of the most important causes of death around the world. The renin-angiotensin system (RAS) and estradiol are two important items that regulate arterial blood pressure in women. However, hypertension, RAS, and sex hormone estradiol may influence renal vascular responses. This study was designed to determine the role of Mas receptor (MasR) on renal vascular response to angiotensin II (Ang II) administration in two kidneys-one clip (2K1C) hypertensive rats treated with estradiol. Method. The ovariectomized rats were subjected to 2K1C or non-2K1C and simultaneously treated with estradiol (500 μg/kg/weekly) or placebo for a period of 4 weeks. Subsequently, under anesthesia, renal vascular responses to graded doses of Ang II administration with MasR blockade (A779) or its vehicle were determined. Results. A779 or its vehicle did not alter mean arterial pressure (MAP), renal perfusion pressure (RPP), and renal blood flow (RBF). However, in non-2K1C rats, Ang II infusion decreased RBF and increased renal vascular resistance (RVR) responses in a dose-related manner ( P treat < 0.0001 ). The greatest responses were found in ovariectomized estradiol-treated rats that received A779 ( P group < 0.05 ) in non-2K1C rats. Such findings were not detected in 2K1C hypertensive rats. For example, in estradiol-treated rats that received A779, at 1000 ng/kg/min of Ang II infusion, RBF reduced from 1.6 ± 0.2 to 0.89 ± 0.19  ml/min in non-2K1C rats, and it reduced from 1.6 ± 0.2 to 1.2 ± 0.2  ml/min in 2K1C rats. Conclusion. Hypertension induced by 2K1C may attenuate the role of A779 and estradiol in renal vascular responses to Ang II infusion. Perhaps, this response can be explained by the reduction of Ang II type 1 receptor (AT1R) expression in the 2K1C hypertensive rats.


2013 ◽  
Vol 126 (8) ◽  
pp. 545-556 ◽  
Author(s):  
Fiorentina Roviezzo ◽  
Antonella De Angelis ◽  
Luana De Gruttola ◽  
Antonio Bertolino ◽  
Nikol Sullo ◽  
...  

S1P exerts a diverse set of vascular responses, and PAR-2 has been shown to be involved in vascular inflammation as well as in other inflammatory-based diseases. In the present study, we demonstrate that S1P-mediated vascular effect involves PAR-2 activation.


2003 ◽  
Vol 23 (4) ◽  
pp. 1260-1268 ◽  
Author(s):  
Per Antonson ◽  
Gertrud U. Schuster ◽  
Ling Wang ◽  
Björn Rozell ◽  
Elin Holter ◽  
...  

ABSTRACT Coactivators constitute a diverse group of proteins that are essential for optimal transcriptional activity of nuclear receptors. In the past few years many coactivators have been identified but it is still unclear whether these proteins interact indiscriminately with all nuclear receptors and whether there is some redundancy in their functions. We have previously cloned and characterized RAP250 (ASC-2/PRIP/TRBP/NRC), an LXXLL-containing coactivator for nuclear receptors. In order to study its biological role, Rap250 null mice were generated by gene targeting. Here we show that genetic disruption of Rap250 results in embryonic lethality at embryonic day (E) 13.5. Histological examination of placentas revealed a dramatically reduced spongiotrophoblast layer, a collapse of blood vessels in the region bordering the spongiotrophoblast, and labyrinthine layers in placentas from Rap250−/− embryos. These findings suggest that the lethality of Rap250−/− embryos is the result of obstructed placental blood circulation. Moreover, the transcriptional activity of PPARγ is reduced in fibroblasts derived from Rap250−/− embryos, suggesting that RAP250 is an essential coactivator for this nuclear receptor in the placenta. Our results demonstrate that RAP250 is necessary for placental development and thus essential for embryonic development.


Sign in / Sign up

Export Citation Format

Share Document