The Therapeutic Potential of Chemokines in the Treatment of Chemotherapy- Induced Peripheral Neuropathy

2020 ◽  
Vol 21 (3) ◽  
pp. 288-301 ◽  
Author(s):  
Lin Zhou ◽  
Luyao Ao ◽  
Yunyi Yan ◽  
Wanting Li ◽  
Anqi Ye ◽  
...  

Background: Some of the current challenges and complications of cancer therapy are chemotherapy- induced peripheral neuropathy (CIPN) and the neuropathic pain that are associated with this condition. Many major chemotherapeutic agents can cause neurotoxicity, significantly modulate the immune system and are always accompanied by various adverse effects. Recent evidence suggests that cross-talk occurs between the nervous system and the immune system during treatment with chemotherapeutic agents; thus, an emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN, as demonstrated by the upregulation of chemokines. Chemokines were originally identified as regulators of peripheral immune cell trafficking, and chemokines are also expressed on neurons and glial cells in the central nervous system. Objective: In this review, we collected evidence demonstrating that chemokines are potential mediators and contributors to pain signalling in CIPN. The expression of chemokines and their receptors, such as CX3CL1/CX3CR1, CCL2/CCR2, CXCL1/CXCR2, CXCL12/CXCR4 and CCL3/CCR5, is altered in the pathological conditions of CIPN, and chemokine receptor antagonists attenuate neuropathic pain behaviour. Conclusion: By understanding the mechanisms of chemokine-mediated communication, we may reveal chemokine targets that can be used as novel therapeutic strategies for the treatment of CIPN.

2018 ◽  
Vol 25 (36) ◽  
pp. 4758-4784 ◽  
Author(s):  
Amy L. Wilson ◽  
Magdalena Plebanski ◽  
Andrew N. Stephens

Cancer is one of the leading causes of death worldwide, and current research has focused on the discovery of novel approaches to effectively treat this disease. Recently, a considerable number of clinical trials have demonstrated the success of immunomodulatory therapies for the treatment of cancer. Monoclonal antibodies can target components of the immune system to either i) agonise co-stimulatory molecules, such as CD137, OX40 and CD40; or ii) inhibit immune checkpoints, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death-1 (PD-1) and its corresponding ligand PD-L1. Although tumour regression is the outcome for some patients following immunotherapy, many patients still do not respond. Furthermore, chemotherapy has been the standard of care for most cancers, but the immunomodulatory capacity of these drugs has only recently been uncovered. The ability of chemotherapy to modulate the immune system through a variety of mechanisms, including immunogenic cell death (ICD), increased antigen presentation and depletion of regulatory immune cells, highlights the potential for synergism between conventional chemotherapy and novel immunotherapy. In addition, recent pre-clinical trials indicate dipeptidyl peptidase (DPP) enzyme inhibition, an enzyme that can regulate immune cell trafficking to the tumour microenvironment, as a novel cancer therapy. The present review focuses on the current immunological approaches for the treatment of cancer, and summarizes clinical trials in the field of immunotherapy as a single treatment and in combination with chemotherapy.


2019 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Marzia Malcangio

AbstractBackgroundAcute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia).Critical role for immune system cells in chronic painPreclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain.Immune system reactions to peripheral nerve injuriesAt the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX3CR1)-expressing monocytes/macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuro-immune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a pro-inflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG.Immune system mechanisms in the central nervous systemIn the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as P2X4/BDNF/GABAA, P2X7/Cathepsin S/Fractalkine/CX3CR1, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms.Conclusions and implicationsDefinition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Zhongli Shi ◽  
Wayne K. Greene ◽  
Philip K. Nicholls ◽  
Dailun Hu ◽  
Janina E.E. Tirnitz-Parker ◽  
...  

<p>The central nervous system (CNS) influences the immune system in a general fashion by regulating the systemic concentration of humoral substances, whereas the autonomic nervous system communicates specifically with the immune system according to local interactions. Data concerning the mechanisms of this bidirectional crosstalk of the peripheral nervous system (PNS) and immune system remain limited. To gain a better understanding of local interactions of the PNS and immune system, we have used immunofluorescent staining of glial fibrillary acidic protein (GFAP), coupled with confocal microscopy, to investigate the non-myelinating Schwann cell (NMSC)-immune cell interactions in mouse mesenteric lymph nodes. Our results demonstrate i) the presence of extensive NMSC processes and even of cell bodies in each compartment of the mouse mesenteric lymph node; ii) close associations/interactions of NMSC processes with blood vessels (including high endothelial venules) and the lymphatic vessel/sinus; iii) close contacts/associations of NMSC processes with various subsets of dendritic cells (such as CD4<sup>+</sup>CD11c<sup>+</sup>, CD8<sup>+</sup>CD11c<sup>+ </sup>dendritic cells), macrophages (F4/80<sup>+</sup> and CD11b<sup>+</sup> macrophages), and lymphocytes. Our novel findings concerning the distribution of NMSCs and NMSC-immune cell interactions inside the mouse lymph node should help to elucidate the mechanisms through which the PNS affects cellular- and humoral-mediated immune responses or vice versa in health and disease.</p>


2010 ◽  
Vol 1 (4) ◽  
pp. 229-234 ◽  
Author(s):  
Taraneh Moini Zanjani ◽  
Masoumeh Sabetkasaei ◽  
Behnaz Karimian ◽  
Farzaneh Labibi ◽  
Babak Farokhi ◽  
...  

AbstractBackgroundEvidence for a role of immune system in hyperalgesic pain states is increasing. Recent work in neuroimmunology suggests that the immune system does more than simply perform its well known functions of recognizing and removing invading pathogens and tumors. Interest in neuroinflammation and neuroimmune activation has grown rapidly in recent years with the recognition of the role of central nervous system inflammatiom and immune responses in the aetiology of pain states. Among various theories, the role of inflammatory responses of the injured nerve has recently received attention. Cytokines are heterogenous group of polypeptides that activate the immune system and mediate inflammatory responses, acting on a variety of tissue, including the peripheral and central nervous system. Interleukin-6 (IL-6) a pro-inflammatory cytokine, is potentially important in pain aetiology, have pronociceptive actions. Neuropathic pain may be due to a primary insult to the peripheral or central nervous system. Substances released during inflammation from immune cells play an important role in the development and maintenance of chronic pain. Nimesulide, a highly selective cox-2 inhibitor, effectively reduces hyperalgesia due to peripherally administration of inflammatory agents like formalin. The safety of nimesulide was reported for some conditions in which other NSAIDs are contraindicated. Here we have determined the effect of nimesulide on pain behaviour and serum IL-6 level in chronic constriction injury (CCI) model of neuropathic pain.MethodsExperiments were carried out on male Wistar rats, (weight 150–200 g, n = 8). Rats were divided into 3 different groups: 1-CCI + saline 0.9% 2Sham + saline 0.9% (control) 3CCI + drug. Nimesulide (1.25, 2.5, 5 mg/kg, i.p.) was injected 1h before surgery and continued daily to day 14 post-ligation. 42 °C water for thermal hyperalgesia, von Frey filaments for mechanical allodynia, acetone test for cool allodynia and 10 °C water for cold hyperalgesia were respectively used as pain behavioural tests. Behavioural tests were recorded before surgery and on postoperative days 1, 3, 5, 7, 10, 14 and the serum concentration of IL-6 was determined at the day 14.ResultsThe results of this study showed a decrease in hyperalgesia and allodynia following nimesulide administration.ConclusionsIt appears that nimesulide was able to reduce pain behaviour due to nerve inflammation and a parallel decrease in the serum IL-6 concentration was observed.ImplicationsThe immune system is an important mediator in the cascade of events that ultimately results in hyperalgesia. Cytokines contribute to the patheogenesis of neuropathic pain, therefore drugs that inhibit cytokine release from immune cells may reduce inflammatory pain states.


2021 ◽  
Vol 27 ◽  
Author(s):  
Youjia Fan ◽  
Rong Dong ◽  
Honghai Zhang ◽  
Buwei Yu ◽  
Han Lu

: The current clinical first-line treatment of neuropathic pain still considers only the nervous system as the target, and its therapeutic effect is limited. An increasing number of studies support the opinion that neuropathic pain is a result of the combined action of the sensory nervous system and the related immune system. Under physiological conditions, both the nervous system and the immune system can maintain homeostasis by adjusting the mitochondrial function when sensing noxious stimulation. However, in the case of neuropathic pain, mitochondrial regulatory dysfunction occurs, which may result from the decreased expression of SIRT1. In this study, we review the role of SIRT1 in neuropathic pain from the viewpoint of neuroimmunity.


Author(s):  
David Brea ◽  
Carrie Poon ◽  
Corinne Benakis ◽  
Gabrielle Lubitz ◽  
Michelle Murphy ◽  
...  

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Gerad Roch ◽  
Gerard Batallé ◽  
Xue Bai ◽  
Enric Pouso-Vázquez ◽  
Laura Rodríguez ◽  
...  

Chemotherapy-induced peripheral neuropathy constitutes an unresolved clinical problem that severely decreases the quality of the patient’s life. It is characterized by somatosensory alterations, including chronic pain, and a high risk of suffering mental disorders such as depression and anxiety. Unfortunately, an effective treatment for this neuropathology is yet to be found. We investigated the therapeutic potential of cobalt protoporphyrin IX (CoPP), a heme oxygenase 1 inducer, and morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex (GYY4137), a slow hydrogen sulfide (H2S) donor, in a preclinical model of paclitaxel (PTX)-induced peripheral neuropathy (PIPN) in mice. At three weeks after PTX injection, we evaluated the effects of the repetitive administration of 5 mg/kg of CoPP and 35 mg/kg of GYY4137 on PTX-induced nociceptive symptoms (mechanical and cold allodynia) and on the associated emotional disturbances (anxiety- and depressive-like behaviors). We also studied the mechanisms that could mediate their therapeutic properties by evaluating the expression of key proteins implicated in the development of nociception, oxidative stress, microglial activation, and apoptosis in prefrontal cortex (PFC) and dorsal root ganglia (DRG) of mice with PIPN. Results demonstrate that CoPP and GYY4137 treatments inhibited both the nociceptive symptomatology and the derived emotional alterations. These actions were mainly mediated through potentiation of antioxidant responses and inhibiting oxidative stress in the DRG and/or PFC of mice with PIPN. Both treatments normalized some plasticity changes and apoptotic reactions, and GYY4137 blocked microglial activation induced by PTX in PFC. In conclusion, this study proposes CoPP and GYY4137 as good candidates for treating neuropathic pain, anxiety- and depressive-like effects of PTX.


2018 ◽  
pp. 157-166
Author(s):  
Whit Braddy

There are many causes of neuropathic pain, as this book illustrates in great detail. The closer we look into these causes, the more researchers are discovering how the immune system contributes to chronic pain. This chapter reviews the most commonly accepted immune-related causes of painful peripheral neuropathy. These fall into four main categories: viral, vasculitis, autoimmune, and paraneoplastic. The review borrows from the texts, journals, and wisdom of colleagues in internal medicine, neurology, and oncology. Despite the fact that these are uncommon subjects for most pain clinicians, they do present in pain clinics. The mechanisms of these related conditions, such as Guillain-Barré syndrome, hepatitis, Sjogren syndrome, and multiple sclerosis, and their treatments have bearing on understanding immune-related causes of painful peripheral neuropathy.


Sign in / Sign up

Export Citation Format

Share Document