Endogenous Enzyme-responsive Nanoplatforms for Anti-tumor Therapy

2021 ◽  
Vol 22 ◽  
Author(s):  
Xue-Fang Lou ◽  
Yong-Zhong Du ◽  
Xiao-Ling Xu

: The emergency of responsive drug delivery systems has contributed to the reduced cytotoxicity, the improved permeability in tissues and extended circulation time of the active drug. Of particular, enzyme-responsive nanoplatforms have attracted a lot due to the specificity and efficiency of an enzyme-catalyzed reaction. In this review, enzyme-based mono responsive drug delivery systems designed in the past 5 years were summarized. These drug delivery systems were introduced by different tumor-related enzymes such as matrix metalloproteinase, esterase, hyaluronidase, caspase and cathepsin. Moreover, the enzyme-sensitive nanoplatforms activated by dual-stimuli were also described. Although great progress had been made in the past years, the translation into clinical practice was still difficult. Thus, three obstacles (enzyme heterogeneity, reaction environment, animal model) were also discussed. In short, enzymeactivated drug delivery systems offer great potential in treating cancers.

2016 ◽  
Vol 22 (19) ◽  
pp. 2808-2820 ◽  
Author(s):  
Houman Alimoradi ◽  
Siddharth S. Matikonda ◽  
Allan B. Gamble ◽  
Gregory I. Giles ◽  
Khaled Greish

Author(s):  
Weihe Yao ◽  
Chenyu Liu ◽  
Ning Wang ◽  
Hengjun Zhou ◽  
Hailiang Chen ◽  
...  

The targeted multi-responsive drug delivery systems with MRI capacity were anticipated as a promising strategy for tumor therapy and diagnosis. Herein, we successfully synthesized anisamide-modified and non-modified UV/GSH-responsive molecules (10,10-NB-S-S-P-AA...


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Yan ◽  
Yue Jin ◽  
Chuanxiang Zhao

AbstractNanoparticles as drug delivery systems can alter the drugs' hydrophilicity to affect drug uptake and efflux in tissues. They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecular structure, and tunable pore size can improve the encapsulation drug's stability under harsh conditions. Besides, the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to effectively respond to the unique tumor microenvironment (TEM), such as high H2O2 levels, hypoxia, and high concentration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circulation and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive MOFs as drug delivery systems for tumor therapy under different stimuli.


2021 ◽  
Vol 66 ◽  
pp. 102880
Author(s):  
Bing Yang ◽  
Tian-tian Wang ◽  
Yu-shun Yang ◽  
Hai-liang Zhu ◽  
Jian-hua Li

2019 ◽  
Vol 8 (1) ◽  
pp. 548-561
Author(s):  
Tianyu Lan ◽  
Qianqian Guo

Abstract The paradigm of using phenylboronic acid-decorated polymeric nanomaterials for advanced bio-application has been well established over the past decade. Phenylboronic acid and its derivatives are known to form reversible complexes with polyols, including sugar, diol and diphenol. This unique chemistry of phenylboronic acid has given many chances to be exploited for diagnostic and therapeutic applications. This review highlights the recent advances in fabrication of phenylboronic acid-decorated polymeric nanomaterials, especially focus on the interactions with glucose and sialic acid. Applications of these phenylboronic acid-decorated nanomaterials in drug delivery systems and biosensors are discussed.


2019 ◽  
Vol 32 (2) ◽  
Author(s):  
Pranali J. Buch ◽  
Yunrong Chai ◽  
Edgar D. Goluch

SUMMARY This review provides a comprehensive summary of issues associated with treating polyclonal bacterial biofilms in chronic diabetic wounds. We use this as a foundation and discuss the alternatives to conventional antibiotics and the emerging need for suitable drug delivery systems. In recent years, extraordinary advances have been made in the field of nanoparticle synthesis and packaging. However, these systems have not been incorporated into the clinic for treatments other than for cancer or severe genetic diseases. We present a unifying perspective on how the field is evolving and the need for an early amalgamation of engineering principles and a biological understanding of underlying phenomena in order to develop a therapy that is translatable to the clinic in a shorter time.


2020 ◽  
Vol 8 (31) ◽  
pp. 6517-6529 ◽  
Author(s):  
Zheng Lian ◽  
Tianjiao Ji

Representative strategies for designing smart drug delivery systems by using functional peptides in the past few years are highlighted in this review.


Author(s):  
Kallem Sharat Venkat Reddy

From the past two decades, technological advancements in science and chemistry made possible many new drug delivery systems that have the potential to completely change the course of routine therapeutic ways.  Lipid and polymer-based drug delivery systems are considered to be the pillars of many drug dosage forms, irrespective of their route of administration. With increasing knowledge on their chemistry, lipids and polymers are being modified and used as potential novel drug delivery systems with smart polymers and lipid nanotechnology paving the way for efficient drug delivery into the patient. This review article covers the swing of these drug delivery systems in the current market and interpreting all this from a health care professional’s point of view. Keywords: Gene delivery, Lipid based drug delivery, Polymer based drug delivery, Target specific drugs, Solid lipid nanoparticles


Sign in / Sign up

Export Citation Format

Share Document