Anticancer Agents Based on Vulnerable Components in a Signalling Pathway

2020 ◽  
Vol 20 (10) ◽  
pp. 886-907 ◽  
Author(s):  
Ankur Vaidya ◽  
Shweta Jain ◽  
Sanjeev Sahu ◽  
Pankaj Kumar Jain ◽  
Kamla Pathak ◽  
...  

Traditional cancer treatment includes surgery, chemotherapy, radiotherapy and immunotherapy that are clinically beneficial, but are associated with drawbacks such as drug resistance and side effects. In quest for better treatment, many new molecular targets have been introduced in the last few decades. Finding new molecular mechanisms encourages researchers to discover new anticancer agents. Exploring the mechanism of action also facilitates anticipation of potential resistance mechanisms and optimization of rational combination therapies. The write up describes the leading molecular mechanisms for cancer therapy, including mTOR, tyrosine Wee1 kinase (WEE1), Janus kinases, PI3K/mTOR signaling pathway, serine/threonine protein kinase AKT, checkpoint kinase 1 (Chk1), maternal embryonic leucine-zipper kinase (MELK), DNA methyltransferase I (DNMT1), poly (ADP-ribose) polymerase (PARP)-1/-2, sphingosine kinase-2 (SK2), pan-FGFR, inhibitor of apoptosis (IAP), murine double minute 2 (MDM2), Bcl-2 family protein and reactive oxygen species 1 (ROS1). Additionally, the manuscript reviews the anticancer drugs currently under clinical trials.

2016 ◽  
Vol 23 ◽  
pp. 23 ◽  
Author(s):  
G. Velasco ◽  
C. Sánchez ◽  
M. Guzmán

In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy. Those observations have already contributed to the foundation for the development of the first clinical studies that will analyze the safety and potential clinical benefit of cannabinoids as anticancer agents.


2019 ◽  
Vol 19 (9) ◽  
pp. 1114-1119 ◽  
Author(s):  
Ahmed A. Mahmoud ◽  
Wael M. El-Sayed

Background: The increase in cancer rate and the development of resistant tumors require a continuous search for new anticancer agents. Aims: This study aimed to analyze and identify the chemical constituents of Anisosciadium lanatum, and to investigate the antiproliferative activity of the identified constituents against various human cell lines (HepG2, MCF7, HT29, A549, and PC3) along with the possible molecular mechanisms involved. Methods: The structure of the isolated compounds was determined by spectroscopic techniques including HRFABMS, GC-MS, IR, and 400 MHz 1D and 2D NMR analyses (1H, 13C NMR, DEPT, 1H-1H COSY, HMQC, HMBC and NOESY). The antiproliferative activity and IC50 value of the isolated compounds were measured and compared to doxorubicin. Results: A new guaiane sesquiterpene containing a rare epoxide structural element, 10β,11β−epoxy−1α,4β,5β,7αΗ- guaiane-9-one, anisosciadone (1), and stigmasterol (2) have been isolated from the plant. Anisosciadone (1) showed a significant antiproliferative activity against liver, colon, and lung cells only, while stigmasterol (2) had a significant activity against liver, colon, and breast cells. Both 1 and 2 caused no cytotoxicity to normal fibroblasts. Anisosciadone elevated the expression and activity of Caspase 3 as well as p53 expression without affecting Caspase 9 in HepG2 cells. It also caused ~ 50% downregulation in cdk1 expression. Conclusion: Taken together, anisosciadone was specific in action against cancer cells and induced apoptosis in liver cells. It also has a unique feature by elevating the expression and activity of Caspase 3 without affecting the initiator Caspase 9. Therefore, anisosciadone deserves more investigation as a targeted therapy for cancer.


2013 ◽  
Vol 202 (3) ◽  
pp. 579-595 ◽  
Author(s):  
Sébastien Britton ◽  
Julia Coates ◽  
Stephen P. Jackson

DNA double-strand breaks (DSBs) are the most toxic of all genomic insults, and pathways dealing with their signaling and repair are crucial to prevent cancer and for immune system development. Despite intense investigations, our knowledge of these pathways has been technically limited by our inability to detect the main repair factors at DSBs in cells. In this paper, we present an original method that involves a combination of ribonuclease- and detergent-based preextraction with high-resolution microscopy. This method allows direct visualization of previously hidden repair complexes, including the main DSB sensor Ku, at virtually any type of DSB, including those induced by anticancer agents. We demonstrate its broad range of applications by coupling it to laser microirradiation, super-resolution microscopy, and single-molecule counting to investigate the spatial organization and composition of repair factories. Furthermore, we use our method to monitor DNA repair and identify mechanisms of repair pathway choice, and we show its utility in defining cellular sensitivities and resistance mechanisms to anticancer agents.


2017 ◽  
Vol 114 (37) ◽  
pp. 9984-9989 ◽  
Author(s):  
Ting Zhang ◽  
Yunfeng Li ◽  
Ling Ma ◽  
Xianchun Sang ◽  
Yinghua Ling ◽  
...  

The spikelet is a unique inflorescence structure in grass. The molecular mechanisms behind the development and evolution of the spikelet are far from clear. In this study, a dominant rice mutant, lateral florets 1 (lf1), was characterized. In the lf1 spikelet, lateral floral meristems were promoted unexpectedly and could generally blossom into relatively normal florets. LF1 encoded a class III homeodomain-leucine zipper (HD-ZIP III) protein, and the site of mutation in lf1 was located in a putative miRNA165/166 target sequence. Ectopic expression of both LF1 and the meristem maintenance gene OSH1 was detected in the axil of the sterile lemma primordia of the lf1 spikelet. Furthermore, the promoter of OSH1 could be bound directly by LF1 protein. Collectively, these results indicate that the mutation of LF1 induces ectopic expression of OSH1, which results in the initiation of lateral meristems to generate lateral florets in the axil of the sterile lemma. This study thus offers strong evidence in support of the “three-florets spikelet” hypothesis in rice.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4550
Author(s):  
Laura Gramantieri ◽  
Catia Giovannini ◽  
Fabrizia Suzzi ◽  
Ilaria Leoni ◽  
Francesca Fornari

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. HCC is associated with multiple risk factors and is characterized by a marked tumor heterogeneity that makes its molecular classification difficult to apply in the clinics. The lack of circulating biomarkers for the diagnosis, prognosis, and prediction of response to treatments further undermines the possibility of developing personalized therapies. Accumulating evidence affirms the involvement of cancer stem cells (CSCs) in tumor heterogeneity, recurrence, and drug resistance. Owing to the contribution of CSCs to treatment failure, there is an urgent need to develop novel therapeutic strategies targeting, not only the tumor bulk, but also the CSC subpopulation. Clarification of the molecular mechanisms influencing CSC properties, and the identification of their functional roles in tumor progression, may facilitate the discovery of novel CSC-based therapeutic targets to be used alone, or in combination with current anticancer agents, for the treatment of HCC. Here, we review the driving forces behind the regulation of liver CSCs and their therapeutic implications. Additionally, we provide data on their possible exploitation as prognostic and predictive biomarkers in patients with HCC.


IUCrJ ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 866-879 ◽  
Author(s):  
Woo-Chang Chung ◽  
Junsoo Kim ◽  
Byung Chul Kim ◽  
Hye-Ri Kang ◽  
JongHyeon Son ◽  
...  

Poly(ADP-ribose) polymerase 1 (PARP-1), an enzyme that modifies nuclear proteins by poly(ADP-ribosyl)ation, regulates various cellular activities and restricts the lytic replication of oncogenic gammaherpesviruses by inhibiting the function of replication and transcription activator (RTA), a key switch molecule of the viral life cycle. A viral PARP-1-interacting protein (vPIP) encoded by murine gammaherpesvirus 68 (MHV-68) orf49 facilitates lytic replication by disrupting interactions between PARP-1 and RTA. Here, the structure of MHV-68 vPIP was determined at 2.2 Å resolution. The structure consists of 12 α-helices with characteristic N-terminal β-strands (Nβ) and forms a V-shaped-twist dimer in the asymmetric unit. Structure-based mutagenesis revealed that Nβ and the α1 helix (residues 2–26) are essential for the nuclear localization and function of vPIP; three residues were then identified (Phe5, Ser12 and Thr16) that were critical for the function of vPIP and its interaction with PARP-1. A recombinant MHV-68 harboring mutations of these three residues showed severely attenuated viral replication both in vitro and in vivo. Moreover, ORF49 of Kaposi's sarcoma-associated herpesvirus also directly interacted with PARP-1, indicating a conserved mechanism of action of vPIPs. The results elucidate the novel molecular mechanisms by which oncogenic gammaherpesviruses overcome repression by PARP-1 using vPIPs.


2021 ◽  
Vol 12 (1) ◽  
pp. 349-356
Author(s):  
Satish Kumar Sharma ◽  
Shmmon Ahmad

Bacterial biofilm has been a major contributor to severe bacterial infections in humans. Oral infections have also been associated with biofilm-forming microbes. Several antimicrobial strategies have been developed to combat bacterial biofilms. However, the complexity of the oral cavity has made it difficult to use common drug treatments. Most effective ways to control normal bacterial infections are rendered ineffective for bacterial biofilms. Due to limited drug concentration availability, drug neutralization or altered phenotype of bacterial cells, different drug have been ineffective to identify the target cells. This leads to the development of the multifaceted phenomenon of antimicrobial resistance (AMR). Biofilm research done so far has been focused on using antimicrobial drugs to target molecular mechanisms of cells. The severity and resistance mechanisms of extracellular matrix (ECM) have been underestimated. The present study describes different antimicrobial strategies with respect to their applications in dental or oral infections. A prospective strategy has been proposed targeting ECM which is expected to provide an insight on biofilm obstinacy and antimicrobial resistance.


Weed Science ◽  
2010 ◽  
Vol 58 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Joshua S. Yuan ◽  
Laura L. G. Abercrombie ◽  
Yongwei Cao ◽  
Matthew D. Halfhill ◽  
Xin Zhou ◽  
...  

The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic information about nontarget resistance mechanisms in any of them ranges from none to little. Here, we report a study combining iGentifier transcriptome analysis, cDNA sequencing, and a heterologous microarray analysis to explore potential molecular and transcriptomic mechanisms of nontarget glyphosate resistance of horseweed. The results indicate that similar molecular mechanisms might exist for nontarget herbicide resistance across multiple resistant plants from different locations, even though resistance among these resistant plants likely evolved independently and available evidence suggests resistance has evolved at least four separate times. In addition, both the microarray and sequence analyses identified non–target-site resistance candidate genes for follow-on functional genomics analysis.


2018 ◽  
Vol 115 (17) ◽  
pp. E4061-E4070 ◽  
Author(s):  
Bastian Dörsam ◽  
Nina Seiwert ◽  
Sebastian Foersch ◽  
Svenja Stroh ◽  
Georg Nagel ◽  
...  

Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1−/−) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1−/− mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1−/− animals were then crossed with O6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1−/−/MGMT−/− double knockout (DKO) mice developed more, but much smaller tumors than MGMT−/− animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O6-methylguanine levels. Studies with PARP-1−/− cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.


2021 ◽  
pp. 1-9

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus [T2DM] onset. It occurs as a result of disturbances in lipid metabolism and increased levels of circulating free fatty acids [FFAs]. FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased fatty acid flux has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes development. FFAs appear to cause this defect in glucose transport by inhibiting insulin –stimulated tyrosine phosphorylation of insulin receptor substrate-1 [IRS-1] and IRS-1 associated phosphatidyl-inositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular or intrahepatic fatty acid metabolites that induce insulin resistance through different cellular mechanisms. The current review point out the link between enhanced FFAs flux and activation of PKC and how it impacts on both the insulin signaling in muscle and liver as shown from our laboratory data and highlighting the involvement of the inflammatory pathways importance. This embarks the importance of measuring the inflammatory biomarkers in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document