From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides

2020 ◽  
Vol 20 (19) ◽  
pp. 2052-2066
Author(s):  
Helloana Azevedo-Barbosa ◽  
Danielle Ferreira Dias ◽  
Lucas Lopardi Franco ◽  
Jamie Anthony Hawkes ◽  
Diogo Teixeira Carvalho

Sulfonamides have been in clinical use for many years, and the development of bioactive substances containing the sulfonamide subunit has grown steadily in view of their important biological properties such as antibacterial, antifungal, antiparasitic, antioxidant, and antitumour properties. This review addresses the medicinal chemistry aspects of sulfonamides; covering their discovery, the structure- activity relationship and the mechanism of action of the antibacterial sulfonamide class, as well as the physico-chemical and pharmacological properties associated with this class. It also provides an overview of the various biological activities inherent to sulfonamides, reporting research that emphasises the importance of this group in the planning and development of bioactive substances, with a special focus on potential antitumour properties. The synthesis of sulfonamides is considered to be simple and provides a diversity of derivatives from a wide variety of amines and sulfonyl chlorides. The sulfonamide group is a non-classical bioisostere of carboxyl groups, phenolic hydroxyl groups and amide groups. This review highlights that most of the bioactive substances have the sulfonamide group, or a related group such as sulfonylurea, in an orientation towards other functional groups. This structural characteristic was observed in molecules with distinct antibacterial activities, demonstrating a clear structure-activity relationship of sulfonamides. This short review sought to contextualise the discovery of classic antibacterial sulfonamides and their physico-chemical and pharmacological properties. The importance of the sulfonamide subunit in Medicinal Chemistry has been highlighted and emphasised, in order to promote its inclusion in the planning and synthesis of future drugs.

2021 ◽  
Vol 14 (5) ◽  
pp. 428
Author(s):  
Douglas Kemboi Magozwi ◽  
Mmabatho Dinala ◽  
Nthabiseng Mokwana ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
...  

Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure–activity relationship of Euphorbia flavonoids for the period covering 2000–2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure–activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.


Author(s):  
Bhupender Nehra ◽  
Bijo Mathew ◽  
Pooja A Chawla

Aim: To describe structure activity relationship of heterocyclic derivatives with multi-targeted anticancer activity. Objectives: With the following goals in mind, this review tries to describe significant recent advances in the medicinal chemistry of heterocycle-based compounds: (1) To shed light on recent literature focused on heterocyclic derivatives' anticancer potential; (2) To discuss recent advances in the medicinal chemistry of heterocyclic derivatives, as well as their biological implications for cancer eradication; (3) To summarise the comprehensive correlation of structure activity relationship (SAR) with pharmacological outcomes in cancer therapy. Background: Cancer remains one of the major serious health issues devastating the world today. Cancer is a complex disease in which improperly altered cells proliferate at an uncontrolled, rapid, and severe rate. Variables such as poor dietary habits, high stress, age, and smoking, can all contribute to the development of cancer. Cancer can affect almost any organ or tissue, although the brain, breast, liver, and colon are the most frequently affected organs. From several years, surgical operations and irradiation are in use along with chemotherapy as a primary treatment of cancer but still effective treatment of cancer remains a huge challenge. Chemotherapy is now one of the most effective strategies to eradicate cancer, although it has been shown to have a number of cytotoxic and unfavourable effects on normal cells. Despite all of these cancer treatments, there are several other targets for anticancer drugs. Cancer can be effectively eradicated by focusing on these targets, which include both cell-specific and receptor-specific targets such as tyrosine kinase receptors (TKIs). Heterocyclic scaffolds also have a variety of applications in drug development and are a common moiety in the pharmaceutical, agrochemical, and textile industries. Methods: The association between structural activity relationship data of many powerful compounds and their anticancer potential in vitro and in vivo has been studied. SAR of powerful heterocyclic compounds can also be generated using molecular docking simulations, as reported vastly in literature. Conclusions: Heterocycles have a wide range of applications, from natural compounds to synthesised derivatives with powerful anticancer properties. To avoid cytotoxicity or unfavourable effects on normal mammalian cells due to a lack of selectivity towards the target site, as well as to reduce the occurrence of drug resistance, safer anticancer lead compounds with higher potency and lower cytotoxicity are needed. This review emphasizes on design and development of heterocyclic lead compounds with promising anticancer potential.


2017 ◽  
Vol 4 (12) ◽  
pp. 2388-2394 ◽  
Author(s):  
Chang Liu ◽  
Qingxin Ma ◽  
Hong He ◽  
Guangzhi He ◽  
Jinzhu Ma ◽  
...  

The structure and activity of surface hydroxyl groups determined the performance of TiO2 during NO2 reaction.


2010 ◽  
Vol 30 (2) ◽  
pp. 138-144 ◽  
Author(s):  
AH Hasiah ◽  
AR Ghazali ◽  
JFF Weber ◽  
S. Velu ◽  
NF Thomas ◽  
...  

Stilbenes possess a variety of biological activities including chemopreventive activity. This study was conducted to evaluate the structural activity relationships of six methoxylated stilbene analogues with respect to their cytotoxic effects and antioxidant activities on HepG2 hepatoma and Chang liver cells. The cytotoxic and total antioxidant activities of six stilbene analogues were determined by MTT and Ferric Reducing Antioxidant Power (FRAP) assays, respectively. We found that the cis-methoxylated stilbene: (Z)-3,4,4'-trimethoxystilbene was the most potent and selective antiproliferative agent (IC50 89 µM) in HepG2 cells. For the total antioxidant activity, compounds possessing hydroxyl groups at the 4' position namely (E)-3-methoxy-4'-hydroxystilbene, (E)-3,5-dimethoxy-4'-hydroxystilbene (pterostilbene), (E)-4-methoxy-4'-hydroxystilbene showed the highest antioxidant activity. Structure activity relationship studies of these compounds demonstrated that the cytotoxic effect and antioxidant activities of the tested compounds in this study were structurally dependent.


2013 ◽  
Vol 1 (19) ◽  
pp. 6051 ◽  
Author(s):  
Christopher J. Karwacki ◽  
P. Ganesh ◽  
Paul R. C. Kent ◽  
Wesley O. Gordon ◽  
Gregory W. Peterson ◽  
...  

2019 ◽  
Vol 05 ◽  
Author(s):  
Vikas Sharma ◽  
Raj Kamal ◽  
Dinesh Kumar ◽  
Vipan Kumar

: Alkaloids having indolizidine moiety are well known for their biological actions. In this review, indolizidine alkaloids like antofine, castanospermine, swainsonine, tylophorine, gephyrotoxins, lentiginosine, pergularinine etc and their derivatives have been discussed. Furthermore, important points related to the structure-activity relationship of selected alkaloids are also summarized. All these studies indicate the lead potential of indolizidine alkaloids that in turn could be effective for future drug discovery.


2014 ◽  
Vol 5 (10) ◽  
pp. 2582-2589 ◽  
Author(s):  
Yixi Xie ◽  
Weijie Yang ◽  
Xiaoqing Chen ◽  
Jianbo Xiao

Hydroxyl groups on the aromatic rings of flavonoids are favorable for inhibiting AChE, and the hydroxylation increases the affinities for AChE. However, methoxylation may decrease or increase the activities depending on the class of flavonoids.


Sign in / Sign up

Export Citation Format

Share Document