Osteomyelitis: Focus on Conventional Treatments and Innovative Drug Delivery Systems

2020 ◽  
Vol 17 ◽  
Author(s):  
Marina Gallarate ◽  
Daniela Chirio ◽  
Giulia Chindamo ◽  
Elena Peira ◽  
Simona Sapino

: Osteomyelitis is a bone marrow infection which generally involves cortical plates and which may occur after bone trauma, orthopedic/maxillofacial surgery or after vascular insufficiency episodes. It mostly affects people from the Third World Countries, elderly and patients affected by systemic diseases e.g. autoimmune disorders, AIDS, osteoporosis and microvascular disease. The highest percentage of osteomyelitis cases (almost 75%) is caused by Staphylococcus spp., and in particular by Staphylococcus aureus (more than 50%). The ideal classification and the diagnosis of osteomyelitis are two important tools which help the physicians to choose the best therapeutic strategies. Currently, common therapies provide an extensive debridement in association with intravenous administration of antibiotics (penicillin or clindamycin, vancomycin and fluoroquinolones among all for resistant microorganisms), to avoid the formation of sequestra. However, conventional therapeutic approach involves several drawbacks like low concentration of antibiotic in the infected site, which can lead to resistance and adverse effects due to the intravenous administration. For these reasons, in the last years several studies have been focused on the development of drug delivery systems such as cement, beads, scaffold and ceramics made of hydroxyapatite (HA), calcium phosphate (CaP) and β-tricalcium phosphate (β-TCP) which demonstrated to be biocompatible, poorly toxic and capable to allow osteointegration and a prolonged drug release. The aim of this review is to provide a focus on current therapies and latest developed drug delivery systems with particular attention on those based on CaP and its derivatives, hoping that this work could allow further direction in the field of osteomyelitis.

Author(s):  
Bibhu Prasad Panda ◽  
N.S Dey ◽  
M.E.B. Rao

Over the past few decades, there has been an increased interest for innovative drug delivery systems to improve safety, efficacy and patient compliance, thereby increasing the product patent life cycle. The discovery and development of new chemical entities is not only an expensive but also time consuming affair. Hence the pharmaceutical industries are focusing on the design and development of innovative drug delivery systems for existing drugs. One such delivery system is the fast disintegrating oral film, which has gained popularity among pediatric and geriatric patients. This fast disintegrating film with many potential benefits of a fast disintegrating tablet but devoid of friability and risk of choking is more acceptable to pediatric and geriatric patients. Formulation of fast disintegrating film can be achieved by various techniques, but common methods of preparation include spraying and casting. These film forming techniques use hydrophilic film former in combination with suitable excipients, which allow the film to disintegrate or dissolve quickly in the mouth within a few seconds without the administration of water. In view of the advantages of the fast disintegrating films over the fast disintegrating tablets and other dosage forms, it has the potential for commercial exploitation. The oral film dosage form not only has certain advantages of other fast disintegrating systems but also satisfies the unmet needs of the market. The present review emphasizes on the potential benefits, design and development of robust, stable, and innovative orally fast- disintegrating films and their future scenarios on a global market as a pharmaceutical dosage form.  


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


2020 ◽  
Vol 21 (18) ◽  
pp. 6617 ◽  
Author(s):  
Angela Fabiano ◽  
Denise Beconcini ◽  
Chiara Migone ◽  
Anna Maria Piras ◽  
Ylenia Zambito

As a natural polysaccharide, chitosan has good biocompatibility, biodegradability and biosecurity. The hydroxyl and amino groups present in its structure make it an extremely versatile and chemically modifiable material. In recent years, various synthetic strategies have been used to modify chitosan, mainly to solve the problem of its insolubility in neutral physiological fluids. Thus, derivatives with negative or positive fixed charge were synthesized and used to prepare innovative drug delivery systems. Positively charged conjugates showed improved properties compared to unmodified chitosan. In this review the main quaternary ammonium derivatives of chitosan will be considered, their preparation and their applications will be described to evaluate the impact of the positive fixed charge on the improvement of the properties of the drug delivery systems based on these polymers. Furthermore, the performances of the proposed systems resulting from in vitro and ex vivo experiments will be taken into consideration, with particular attention to cytotoxicity of systems, and their ability to promote drug absorption.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Alka Lohani ◽  
Garima Singh ◽  
Shiv Sankar Bhattacharya ◽  
Anurag Verma

Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.


2018 ◽  
Vol 8 (6) ◽  
pp. 373-377
Author(s):  
Prabhjot Kaur ◽  
Rajeev Garg

Over the past few decades, tendency toward innovative drug delivery systems has almightily increased attempts to ensure efficacy, safety and patient acceptability. As discovery and development of new chemical agents is a complex, expensive and time consuming process, so recent trends are shifting toward designing and developing innovative drug delivery systems for existing drugs. Orally fast dissolving film is the kind of drug delivery system which when placed in the oral cavity, disintegrate or dissolve within a few seconds without the intake of water. Oral fast dissolving film is relatively new dosage form in which thin film is prepared using hydrophilic polymers, which rapidly disintegrate or dissolves on tongue or in the buccal cavity It is an alternative platform for molecules that undergoes high first pass metabolism. The method of preparation for oral dissolving film. Solvent casting, Semisolid casting, Hot melt extrusion, Solid dispersion extrusion, Rolling The current evaluation gives an account of different formulations methods of preparation and quality control of the fast dissolving oral thin film. Keyword:  First pass metabolism, Tensile strength,  Fast Dissolving Oral Film etc.


2019 ◽  
Vol 557 ◽  
pp. 182-191 ◽  
Author(s):  
Juliane Anderski ◽  
Laura Mahlert ◽  
Jingjiang Sun ◽  
Wolfgang Birnbaum ◽  
Dennis Mulac ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 356-372
Author(s):  
Yi Wang

In recent years, RNA interference technology has been extensively studied for its therapeutic potential against a wide variety of diseases. It aims to silence the expression of undesired genes associated with the target disease by the administration of RNA interference agents. However, these agents (nucleic acids) are unstable in the circulatory system and lack target specificity. Drug delivery systems are, therefore, crucial for the successful practice of the technique. A wide array of delivery systems has been developed to conquer these challenges, such as viral vectors, inorganic drug carriers, polymeric carriers and lipid-based carriers, with, however, significant limitations. In addition to the existing technologies, novel, innovative drug delivery systems, such as the configurable xenobot, are emerging at a rapid pace and have the potential to take the realm of biomedicine to the next level. This review summarizes technical difficulties in the development of drug delivery systems and current technologies developed for delivering RNAi agents with a discussion on their limitations.


2021 ◽  
Vol 07 ◽  
Author(s):  
Sumit Aroraa ◽  
Veerendra Dhoke ◽  
Keshav Moharir ◽  
Subhash Yende ◽  
Sapan Shah

: Herbal extracts and isolated bioactives from plants have proven their therapeutic activities as evidenced by preclinical and clinical research. However, there seems some disconnect in their clinical utility as marked by lack of proper delivery mechanism at desired sites of action. This glitch nowadays is a task for global research activity and being addressed in the form of novel drug delivery systems. A steady progress is observed in integrating novel techniques of drug delivery with successful incorporation of phytochemicals marked by scores of advantages. Limitations of conventional drug delivery systems are overcome to considerable extent by innovative drug delivery methods which show improvement in targeted drug delivery, drug distribution, and protection of active substance, prolonged action and stability. The perspective of this review thus focuses on the progress in novel drug delivery systems with spotlight on nanocarriers for herbal active agents, their preparation methods with types, examples of active ingredients incorporated and biomedical applications.


Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 119 ◽  
Author(s):  
Eliana B. Souto ◽  
João Dias-Ferreira ◽  
Sara A. Craveiro ◽  
Patrícia Severino ◽  
Elena Sanchez-Lopez ◽  
...  

The incidence of neglected diseases in tropical countries, such as Leishmaniasis and Chagas’s disease, is attributed to a set of biological and ecological factors associated with the socioeconomic context of developing countries and with a significant burden to health care systems. Both Leishmaniasis and Chagas’s disease are caused by different protozoa and develop diverse symptoms, which depend on the specific species infecting man. Currently available drugs to treat these disorders have limited therapeutic outcomes, frequently due to microorganisms’ drug resistance. In recent years, significant efforts have been made towards the development of innovative drug delivery systems aiming to improve bioavailability and pharmacokinetic profiles of classical drug therapy. This paper discusses the key facts of Leishmaniasis and Chagas’s disease, the currently available pharmacological therapies and the new drug delivery systems for conventional drugs.


2014 ◽  
Vol 15 (5) ◽  
pp. 7409-7428 ◽  
Author(s):  
Kai Zhang ◽  
Zhi Xu ◽  
Ji Lu ◽  
Zhi Tang ◽  
Hui Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document