Elevated Inflammatory Parameter Levels Negatively Impact Populations of Circulating Stem Cells (CD133+), Early Endothelial Progenitor Cells (CD133+/VEGFR2+), and Fibroblast Growth Factor in Stroke Patients

2019 ◽  
Vol 16 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Monika Golab-Janowska ◽  
Edyta Paczkowska ◽  
Boguslaw Machalinski ◽  
Dariusz Kotlega ◽  
Agnieszka Meller ◽  
...  

Background: Endothelial Progenitor Cells (EPCs) are important players in neovascularization, mobilized through signalling by Angiogenic Growth Factors (AGFs) such as Vascular Endothelial Growth Factor (VEGF) and fibroblast growth factor (FGF). In vitro, inflammatory parameters impair the function and influence of EPCs on AGFs. However, this connection is not clear in vivo. To understand the mechanisms of augmented arteriogenesis and angiogenesis in acute ischemic stroke (AIS) patients, we investigated whether circulating stem cells (CD133+), early endothelial progenitor cells (CD133+/VEGFR2+), and endothelial cells (ECs; CD34¯/CD133¯/VEGFR2+) were increasingly mobilized during AIS, and whether there were correlations between EPC levels, growth factor levels and inflammatory parameters. Methods: Data on demographics, classical vascular risk factors, neurological deficit information (assessed using the National Institutes of Health Stroke Scale), and treatment were collected from 43 consecutive AIS patients (group I). Risk factor control patients (group II) included 22 nonstroke subjects matched by age, gender, and traditional vascular risk factors. EPCs were measured by flow cytometry and the populations of circulating stem cells (CD133+), early EPCs (CD133+/VEGFR2+), and ECs (CD34¯/CD133¯/VEGFR2+) were analysed. Correlations between EPC levels and VEGF and FGF vascular growth factor levels as well as the influence of inflammatory parameters on EPCs and AGFs were assessed. Results: Patient ages ranged from 54 to 92 years (mean age 75.2 ± 11.3 years). The number of circulating CD34¯/CD133¯/VEGF-R2+ cells was significantly higher in AIS patients than in control patients (p < 0.05). VEGF plasma levels were also significantly higher in AIS patients compared to control patients on day 7 (p < 0.05). FGF plasma levels in patients with AIS were significantly higher than those in the control group on day 3 (p < 0.05). There were no correlations between increased VEGF and FGF levels and the number of CD133+, CD133+/VEGFR2+, or CD34¯/CD133¯/VEGFR2+ cells. Leukocyte levels, FGF plasma levels, and the number of early EPCs were negatively correlated on day 3. High sensitivity C-reactive protein levels and the number of CD133+ and CD133+/VEGFR2+ cells were negatively correlated on day 7. In addition, there was a negative correlation between fibrinogen levels and FGF plasma levels as well as the number of early EPCs (CD133+/VEGFR2+). Conclusion: AIS patients exhibited increased numbers of early EPCs (CD133+/VEGFR2+) and AGF (VEGF and FGF) levels. A negative correlation between inflammatory parameters and AGFs and EPCs indicated the unfavourable influence of inflammatory factors on EPC differentiation and survival. Moreover, these correlations represented an important mechanism linking inflammation to vascular disease.

2010 ◽  
Vol 120 (7) ◽  
pp. 263-283 ◽  
Author(s):  
Shaundeep Sen ◽  
Stephen P. McDonald ◽  
P. Toby H. Coates ◽  
Claudine S. Bonder

Bone-marrow-derived EPCs (endothelial progenitor cells) play an integral role in the regulation and protection of the endothelium, as well as new vessel formation. Peripheral circulating EPC number and function are robust biomarkers of vascular risk for a multitude of diseases, particularly CVD (cardiovascular disease). Importantly, using EPCs as a biomarker is independent of both traditional and non-traditional risk factors (e.g. hypertension, hypercholesterolaemia and C-reactive protein), with infused ex vivo-expanded EPCs showing potential for improved endothelial function and either reducing the risk of events or enhancing recovery from ischaemia. However, as the number of existing cardiovascular risk factors is variable between patients, simple EPC counts do not adequately describe vascular disease risk in all clinical conditions and, as such, the risk of CVD remains. It is likely that this limitation is attributable to variation in the definition of EPCs, as well as a difference in the interaction between EPCs and other cells involved in vascular control such as pericytes, smooth muscle cells and macrophages. For EPCs to be used regularly in clinical practice, agreement on definitions of EPC subtypes is needed, and recognition that function of EPCs (rather than number) may be a better marker of vascular risk in certain CVD risk states. The present review focuses on the identification of measures to improve individual risk stratification and, further, to potentially individualize patient care to address specific EPC functional abnormalities. Herein, we describe that future therapeutic use of EPCs will probably rely on a combination of strategies, including optimization of the function of adjunct cell types to prime tissues for the effect of EPCs.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129665 ◽  
Author(s):  
Liya Huang ◽  
Fei Wang ◽  
Yuqiang Wang ◽  
Qing Cao ◽  
Tiantian Sang ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6418 ◽  
Author(s):  
Maria Godoy-Gallardo ◽  
Núria Portolés-Gil ◽  
Ana M. López-Periago ◽  
Concepción Domingo ◽  
Leticia Hosta-Rigau

We have previously reported the fabrication of a polycaprolactone and hydroxyapatite composite scaffold incorporating growth factors to be used for bone regeneration. Two growth factors were incorporated employing a multilayered coating based on polydopamine (PDA). In particular, Bone morphogenetic protein-2 (BMP-2) was bound onto the inner PDA layer while vascular endothelial growth factor (VEGF) was immobilized onto the outer one. Herein, the in vitro release of both growth factors is evaluated. A fastest VEGF delivery followed by a slow and more sustained release of BMP-2 was demonstrated, thus fitting the needs for bone tissue engineering applications. Due to the relevance of the crosstalk between bone-promoting and vessel-forming cells during bone healing, the functionalized scaffolds are further assessed on a co-culture setup of human mesenchymal stem cells and human endothelial progenitor cells. Osteogenic and angiogenic gene expression analysis indicates a synergistic effect between the growth factor-loaded scaffolds and the co-culture conditions. Taken together, these results indicate that the developed scaffolds hold great potential as an efficient platform for bone-tissue applications.


Sign in / Sign up

Export Citation Format

Share Document