Neuroinflammation in Alzheimer’s Disease: Microglia, Molecular Participants and Therapeutic Choices

2019 ◽  
Vol 16 (7) ◽  
pp. 659-674 ◽  
Author(s):  
Haijun Wang ◽  
Yin Shen ◽  
Haoyu Chuang ◽  
Chengdi Chiu ◽  
Youfan Ye ◽  
...  

Alzheimer’s disease is the world’s most common dementing illness. It is pathologically characterized by β-amyloid accumulation, extracellular senile plaques and intracellular neurofibrillary tangles formation, and neuronal necrosis and apoptosis. Neuroinflammation has been widely recognized as a crucial process that participates in AD pathogenesis. In this review, we briefly summarized the involvement of microglia in the neuroinflammatory process of Alzheimer’s disease. Its roles in the AD onset and progression are also discussed. Numerous molecules, including interleukins, tumor necrosis factor alpha, chemokines, inflammasomes, participate in the complex process of AD-related neuroinflammation and they are selectively discussed in this review. In the end of this paper from an inflammation- related perspective, we discussed some potential therapeutic choices.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tetsuya Mizuno

Neuroinflammation is involved in the pathogenesis of Alzheimer's disease (AD). Microglia, macrophage-like resident immune cells in the brain, play critical roles in the inflammatory aspects of AD. Microglia may be activated by oligomeric and fibrillar species of amyloidβ(Aβ) that are constituents of senile plaques and by molecules derived from degenerated neurons, such as purines and chemokines, which enhance their migration and phagocytosis. The main neurotoxic molecules produced by activated microglia may be reactive oxygen species, glutamate, and inflammatory cytokines such as tumor-necrosis-factor-αand interleukin- (IL-) 1βThese molecules differentially induce neurotoxicity. Aβitself directly damages neurons. In terms of neuroprotective properties, microglia treated with fractalkine or IL-34 attenuate Aβneurotoxicity by Aβclearance and the production of antioxidants. Therefore, regulation of the microglial role in neuroprotection may be a useful therapeutic strategy for AD.


2017 ◽  
Vol 14 (4) ◽  
pp. 412-425 ◽  
Author(s):  
Boris Decourt ◽  
Debomoy K. Lahiri ◽  
Marwan N. Sabbagh

Alzheimer’s disease (AD) affects an estimated 44 million individuals worldwide, yet no therapeutic intervention is available to stop the progression of the dementia. Neuropathological hallmarks of AD are extracellular deposits of amyloid beta (Aβ) peptides assembled in plaques, intraneuronal accumulation of hyperphosphorylated tau protein forming tangles, and chronic inflammation. A pivotal molecule in inflammation is the pro-inflammatory cytokine TNF-α. Several lines of evidence using genetic and pharmacological manipulations indicate that TNF-α signaling exacerbates both Aβ and tau pathologies in vivo. Interestingly, preventive and intervention anti-inflammatory strategies demonstrated a reduction in brain pathology and an amelioration of cognitive function in rodent models of AD. Phase I and IIa clinical trials suggest that TNF-α inhibitors might slow down cognitive decline and improve daily activities in AD patients. In the present review, we summarize the evidence pointing towards a beneficial role of anti-TNF-α therapies to prevent or slow the progression of AD. We also present possible physical and pharmacological interventions to modulate TNF-α signaling in AD subjects along with their limitations.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


Sign in / Sign up

Export Citation Format

Share Document