scholarly journals Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer’s Disease

2020 ◽  
Vol 16 (13) ◽  
pp. 1163-1174 ◽  
Author(s):  
Jin Li ◽  
Feng Chen ◽  
Qiushi Zhang ◽  
Xianglian Meng ◽  
Xiaohui Yao ◽  
...  

Background: The etiology of Alzheimer’s disease remains poorly understood at the mechanistic level, and genome-wide network-based genetics have the potential to provide new insights into the disease mechanisms. Objective: The study aimed to explore the collective effects of multiple genetic association signals on an AV-45 PET measure, which is a well-known Alzheimer’s disease biomarker, by employing a networ kassisted strategy. Method: First, we took advantage of a dense module search algorithm to identify modules enriched by genetic association signals in a protein-protein interaction network. Next, we performed statistical evaluation to the modules identified by dense module search, including a normalization process to adjust the topological bias in the network, a replication test to ensure the modules were not found randomly , and a permutation test to evaluate unbiased associations between the modules and amyloid imaging phenotype. Finally, topological analysis, module similarity tests and functional enrichment analysis were performed for the identified modules. Results: We identified 24 consensus modules enriched by robust genetic signals in a genome-wide association analysis. The results not only validated several previously reported AD genes (APOE, APP, TOMM40, DDAH1, PARK2, ATP5C1, PVRL2, ELAVL1, ACTN1 and NRF1), but also nominated a few novel genes (ABL1, ABLIM2) that have not been studied in Alzheimer’s disease but have shown associations with other neurodegenerative diseases. Conclusion: The identified genes, consensus modules and enriched pathways may provide important clues to future research on the neurobiology of Alzheimer’s disease and suggest potential therapeutic targets.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph S. Reddy ◽  
Mariet Allen ◽  
Charlotte C. G. Ho ◽  
Stephanie R. Oatman ◽  
Özkan İş ◽  
...  

AbstractCerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer’s disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = −3.70 [95% CI −0.49—−0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.


2012 ◽  
Vol 22 (4) ◽  
pp. 816-824 ◽  
Author(s):  
Jade Chapman ◽  
Elliott Rees ◽  
Denise Harold ◽  
Dobril Ivanov ◽  
Amy Gerrish ◽  
...  

2021 ◽  
Author(s):  
Atul Kumar ◽  
Maryam Shoai ◽  
Sebastian Palmqvist ◽  
Erik Stomrud ◽  
John Hardy ◽  
...  

Abstract Background Cognitive decline in early-stage Alzheimer’s disease (AD) may depend on genetic variability. Methods In the Swedish BioFINDER study, we used polygenic scores (PGS) (for AD, intelligence and educational attainment), and genetic variants (in a genome-wide association study [GWAS]) to predict longitudinal cognitive change (measured by MMSE) over a mean of 4.2 years. We included 555 β-amyloid (Aβ) negative cognitively unimpaired (CU) individuals, 206 Aβ-positive CU (preclinical AD), 110 Aβ-negative mild cognitive impairment (MCI) patients, and 146 Aβ-positive MCI patients (prodromal AD). Results Polygenic scores for AD (in Aβ-positive individuals) and intelligence (independent of Aβ-status) were associated with cognitive decline. Eight genes were associated with cognitive decline in GWAS (3 independent of Aβ-status). Conclusions AD risk genes may influence cognitive decline in early AD, while genes related to intelligence may modulate cognitive decline irrespective of disease. Therapies targeting the implicated biological pathways may modulate the clinical course of AD.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Richard Abraham ◽  
Valentina Moskvina ◽  
Rebecca Sims ◽  
Paul Hollingworth ◽  
Angharad Morgan ◽  
...  

2015 ◽  
Vol 25 (4) ◽  
pp. 139-146 ◽  
Author(s):  
Atsushi Hirano ◽  
Tomoyuki Ohara ◽  
Atsushi Takahashi ◽  
Masayuki Aoki ◽  
Yuta Fuyuno ◽  
...  

2010 ◽  
Vol 6 ◽  
pp. S189-S189
Author(s):  
Daan Van Abel ◽  
Marie Van Dijk ◽  
Dennis Y.M. Lo ◽  
Rossa W.K. Chiu ◽  
Fiona M.F. Lun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document