Electronic Nose and Exhaled Breath NMR-based Metabolomics Applications in Airways Disease

2016 ◽  
Vol 16 (14) ◽  
pp. 1610-1630 ◽  
Author(s):  
Giuseppe Santini ◽  
Nadia Mores ◽  
Andreu Penas ◽  
Rosamaria Capuano ◽  
Chiara Mondino ◽  
...  
Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106767
Author(s):  
Cristhian Manuel Durán Acevedo ◽  
Carlos A. Cuastumal Vasquez ◽  
Jeniffer Katerine Carrillo Gómez

ETRI Journal ◽  
2018 ◽  
Vol 40 (6) ◽  
pp. 802-812 ◽  
Author(s):  
Jin-Young Jeon ◽  
Jang-Sik Choi ◽  
Joon-Boo Yu ◽  
Hae-Ryong Lee ◽  
Byoung Kuk Jang ◽  
...  

2016 ◽  
Vol 42 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Silvano Dragonieri ◽  
Vitaliano Nicola Quaranta ◽  
Pierluigi Carratu ◽  
Teresa Ranieri ◽  
Onofrio Resta

We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose), resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age) could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively).Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose.


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 209
Author(s):  
Davide Marzorati ◽  
Luca Mainardi ◽  
Giulia Sedda ◽  
Roberto Gasparri ◽  
Lorenzo Spaggiari ◽  
...  

Lung cancer is characterized by a tremendously high mortality rate and a low 5-year survival rate when diagnosed at a late stage. Early diagnosis of lung cancer drastically reduces its mortality rate and improves survival. Exhaled breath analysis could offer a tool to clinicians to improve the ability to detect lung cancer at an early stage, thus leading to a reduction in the associated survival rate. In this paper, we present an electronic nose for the automatic analysis of exhaled breath. A total of five a-specific gas sensors were embedded in the electronic nose, making it sensitive to different volatile organic compounds (VOCs) contained in exhaled breath. Nine features were extracted from each gas sensor response to exhaled breath, identifying the subject breathprint. We tested the electronic nose on a cohort of 80 subjects, equally split between lung cancer and at-risk control subjects. Including gas sensor features and clinical features in a classification model, recall, precision, and accuracy of 78%, 80%, and 77% were reached using a fourfold cross-validation approach. The addition of other a-specific gas sensors, or of sensors specific to certain compounds, could improve the classification accuracy, therefore allowing for the development of a clinical tool to be integrated in the clinical pipeline for exhaled breath analysis and lung cancer early diagnosis.


Author(s):  
R. de Vries ◽  
J.M. van den Heuvel ◽  
Y.W.F. Dagelet ◽  
E. Dijkers ◽  
T. Fabius ◽  
...  

Author(s):  
Akira Hattesohl ◽  
Sarah Noeske ◽  
Severin Schmid ◽  
Rudolf A. Jörres ◽  
Claus F. Vogelmeier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document