Prediction and Targeting of Interaction Interfaces in G-protein Coupled Receptor Oligomers

2018 ◽  
Vol 18 (8) ◽  
pp. 714-746 ◽  
Author(s):  
Anke C. Schiedel ◽  
Meryem Kose ◽  
Carlos Barreto ◽  
Beatriz Bueschbell ◽  
Giulia Morra ◽  
...  

Background: Communication within a protein complex is mediated by physical interactions made among the protomers. Evidence for both the allosteric regulation present among the protomers of the protein oligomer and of the direct effect of membrane composition on this regulation has made it essential to investigate the underlying molecular mechanism that drives oligomerization, the type of interactions present within the complex, and to determine the identity of the interaction interface. This knowledge allows a holistic understanding of dynamics and also modulation of the function of the resulting oligomers/signalling complexes. G-Protein-Coupled Receptors (GPCRs), which are targeted by 40% of currently prescribed drugs in the market, are widely involved in the formation of such physiological oligomers/signalling complexes. Scope: This review highlights the importance of studying Protein-Protein Interactions (PPI) by using a combination of data obtained from cutting-edge experimental and computational methods that were developed for this purpose. In particular, we focused on interaction interfaces found at GPCR oligomers as well as signalling complexes, since any problem associated with these interactions causes the onset of various crucial diseases. Conclusion: In order to have a holistic mechanistic understanding of allosteric PPIs that drive the formation of GPCR oligomers and also to determine the composition of interaction interfaces with respect to different membrane compositions, it is essential to combine both relevant experimental and computational data. In this way, efficient and specific targeting of these interaction interfaces in oligomers/ complexes can be achieved. Thus, effective therapeutic molecules with fewer side effects can be designed to modulate the function of these physiologically important receptor family.

2018 ◽  
Vol 115 (12) ◽  
pp. 3036-3041 ◽  
Author(s):  
Yinglong Miao ◽  
J. Andrew McCammon

Protein–protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein–protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR–nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein–protein interactions.


2013 ◽  
Vol 39 (1) ◽  
pp. 131-155 ◽  
Author(s):  
Kjell Fuxe ◽  
Dasiel O Borroto-Escuela ◽  
Wilber Romero-Fernandez ◽  
Miklós Palkovits ◽  
Alexander O Tarakanov ◽  
...  

2017 ◽  
Vol 28 (3) ◽  
pp. 429-439 ◽  
Author(s):  
Tomoaki Hirano ◽  
Yohei Katoh ◽  
Kazuhisa Nakayama

Cilia serve as cellular antennae where proteins involved in sensory and developmental signaling, including G protein–coupled receptors (GPCRs), are specifically localized. Intraflagellar transport (IFT)-A and -B complexes mediate retrograde and anterograde ciliary protein trafficking, respectively. Using a visible immunoprecipitation assay to detect protein–protein interactions, we show that the IFT-A complex is divided into a core subcomplex, composed of IFT122/IFT140/IFT144, which is associated with TULP3, and a peripheral subcomplex, composed of IFT43/IFT121/IFT139, where IFT139 is most distally located. IFT139-knockout (KO) and IFT144-KO cells demonstrated distinct phenotypes: IFT139-KO cells showed the accumulation of IFT-A, IFT-B, and GPCRs, including Smoothened and GPR161, at the bulged ciliary tips; IFT144-KO cells showed failed ciliary entry of IFT-A and GPCRs and IFT-B accumulation at the bulged tips. These observations demonstrate the distinct roles of the core and peripheral IFT-A subunits: IFT139 is dispensable for IFT-A assembly but essential for retrograde trafficking of IFT-A, IFT-B, and GPCRs; in contrast, IFT144 is essential for functional IFT-A assembly and ciliary entry of GPCRs but dispensable for anterograde IFT-B trafficking. Thus the data presented here demonstrate that the IFT-A complex mediates not only retrograde trafficking but also entry into cilia of GPCRs.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 537 ◽  
Author(s):  
Chayma El Khamlichi ◽  
Flora Reverchon-Assadi ◽  
Nadège Hervouet-Coste ◽  
Lauren Blot ◽  
Eric Reiter ◽  
...  

The bioluminescence resonance energy transfer (BRET) approach involves resonance energy transfer between a light-emitting enzyme and fluorescent acceptors. The major advantage of this technique over biochemical methods is that protein-protein interactions (PPI) can be monitored without disrupting the natural environment, frequently altered by detergents and membrane preparations. Thus, it is considered as one of the most versatile technique for studying molecular interactions in living cells at “physiological” expression levels. BRET analysis has been applied to study many transmembrane receptor classes including G-protein coupled receptors (GPCR). It is well established that these receptors may function as dimeric/oligomeric forms and interact with multiple effectors to transduce the signal. Therefore, they are considered as attractive targets to identify PPI modulators. In this review, we present an overview of the different BRET systems developed up to now and their relevance to identify inhibitors/modulators of protein–protein interaction. Then, we introduce the different classes of agents that have been recently developed to target PPI, and provide some examples illustrating the use of BRET-based assays to identify and characterize innovative PPI modulators in the field of GPCRs biology. Finally, we discuss the main advantages and the limits of BRET approach to characterize PPI modulators.


2021 ◽  
Vol 22 (15) ◽  
pp. 8328
Author(s):  
Beatriz Bueschbell ◽  
Prashiela Manga ◽  
Erika Penner ◽  
Anke C. Schiedel

Protein-protein interactions between G protein-coupled receptors (GPCRs) can augment their functionality and increase the repertoire of signaling pathways they regulate. New therapeutics designed to modulate such interactions may allow for targeting of a specific GPCR activity, thus reducing potential for side effects. Dopamine receptor (DR) heteromers are promising candidates for targeted therapy of neurological conditions such as Parkinson’s disease since current treatments can have severe side effects. To facilitate development of such therapies, it is necessary to identify the various DR binding partners. We report here a new interaction partner for DRD2 and DRD3, the orphan receptor G protein-coupled receptor 143 (GPR143), an atypical GPCR that plays multiple roles in pigment cells and is expressed in several regions of the brain. We previously demonstrated that the DRD2/ DRD3 antagonist pimozide also modulates GPR143 activity. Using confocal microscopy and two FRET methods, we observed that the DRs and GPR143 colocalize and interact at intracellular membranes. Furthermore, co-expression of wildtype GPR143 resulted in a 57% and 67% decrease in DRD2 and DRD3 activity, respectively, as determined by β-Arrestin recruitment assay. GPR143-DR dimerization may negatively modulate DR activity by changing affinity for dopamine or delaying delivery of the DRs to the plasma membrane.


2021 ◽  
Vol 22 (6) ◽  
pp. 3241
Author(s):  
Raudah Lazim ◽  
Donghyuk Suh ◽  
Jai Woo Lee ◽  
Thi Ngoc Lan Vu ◽  
Sanghee Yoon ◽  
...  

G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein–protein interactions (PPI).


Sign in / Sign up

Export Citation Format

Share Document