Mechanistic and Kinetic Study of Atmospheric Oxidation of Chlordane Initiated by OH Radicals

2019 ◽  
Vol 16 (8) ◽  
pp. 647-655
Author(s):  
Zhezheng Ding ◽  
Yayi Yi ◽  
Fei Xu ◽  
Qingzhu Zhang ◽  
Xiaoli Xu ◽  
...  

Chlordane, one of the extremely hazardous Persistent Organic Pollutants (POPs), was widely used as pesticides all over the world and its residues have been detected at high concentrations in many areas. As a species of Semi-Volatile Organic Compounds (SVOCs), chlordane exists mainly in the atmosphere where it can be migrated and transformed. Due to the carcinogenic and mutagenic properties, understanding its atmospheric fate is of great significance. In the present work, the oxidation mechanism of chlordane initiated by OH radicals under the atmospheric conditions was investigated by using Density Functional Theory (DFT). The geometrical structures were optimized at the M06- 2X/6-311+g(d,p) level and single-point energies were calculated at the M06-2X/6-311+g(3df,2p) level. The relevant rate constants of the key elementary reactions were calculated by using Rice-Ramsperger- Kassel-Marcus (RRKM) theory at 298 K and 1 atm. All of the energetically favorable pathways were discussed in detail, and theoretical results showed that the oxidation products are dichlorochlordene, hydroxychlrodane, cycloketone and dichloracyl. Combined with available experimental observation, this study can, therefore, help to clarify the atmospheric fate of chlordane.

2013 ◽  
Vol 91 (6) ◽  
pp. 472-478 ◽  
Author(s):  
Xiaoyan Sun ◽  
Lei Ding ◽  
Qingzhu Zhang ◽  
Wenxing Wang

Polyfluorinated sulfonamides (FSAs, F(CF2)nSO2NR1R2) are present in the atmosphere and may serve as the source of perfluorocarboxylates (PFCAs, CF3(CF2)nCOO–) in remote locations through long-range atmospheric transport and oxidation. Density functional theory (DFT) molecular orbital theory calculations were carried out to investigate OH radical-initiated atmospheric oxidation of a series of sulfonamides, F(CF2)nSO2NR1R2 (n = 4, 6, 8). Geometry optimizations of the reactants as well as the intermediates, transition states, and products were performed at the MPWB1K level with the 6-31G+(d,p) basis set. Single-point energy calculations were carried out at the MPWB1K/6-311+G(3df,2p) level of theory. The OH radical-initiated reaction mechanism is given and confirms that the OH addition to the sulfone double bond producing perfluoroalkanesulfonic acid directly cannot occur in the general atmosphere. Canonical variational transition-state (CVT) theory with small curvature tunneling (SCT) contribution was used to predict the rate constants. The overall rate constants were determined, k(T) (N-EtFBSA + OH) = (3.21 × 10−12) exp(–584.19/T), k(T) (N-EtFHxSA + OH) = (3.21 × 10−12) exp(–543.24/T), and k(T) (N-EtFOSA + OH) = (2.17 × 10−12) exp(–504.96/T) cm3 molecule−1 s−1, over the possible atmospheric temperature range of 180–370 K, indicating that the length of the F(CF2)n group has no large effect on the reactivity of FSAs. Results show that the atmospheric lifetime of FSAs determined by OH radicals will be 20–40 days, which agrees well with the experimental values (20–50 days), 20 thus they may contribute to the burden of perfluorinated pollution in remote regions.


2014 ◽  
Vol 92 (7) ◽  
pp. 598-604 ◽  
Author(s):  
Yan Zhao ◽  
Xiaomin Sun ◽  
Wenxing Wang ◽  
Laixiang Xu

The chlorine-initiated reaction mechanism of ethyl formate in the atmosphere was investigated using the density functional theory method. The geometry parameters and frequencies of all of the stationary points were calculated at the B3LYP/ 6-31G(d,p) level. The single-point energy calculations were carried out at different levels, including MP2/6-31G(d), MP2/6-311++G(d,p), and CCSD(T)/6-31G(d). A detailed oxidation mechanism is provided and discussed. Present results show that α-ester rearrangement reaction and the O2 direct abstraction from IM6 (HC(O)OCH(O)CH3) are the more favorable pathway and are competitive. The 1,4-H shift isomerization of IM6 proved to be feasible under general atmospheric conditions. The decomposition of IM18 (CH3CH2OC(O)O) is favorable both thermodynamically and kinetically. Canonical variational transition theory with small-curvature tunneling correction was employed to predict the rate constants. The overall rate constant of ethyl formate at 298 K is 8.63 × 10−12 cm3 molecule−1 s−1. The Arrhenius equations of rate constants at the temperature range of 200–380 K were fitted.


2012 ◽  
Vol 90 (8) ◽  
pp. 708-715 ◽  
Author(s):  
Yuyang Zhao ◽  
Jing Bai ◽  
Chenxi Zhang ◽  
Chen Gong ◽  
Xiaomin Sun

Density functional theory (DFT) was used to study the β-myrcene ozonolysis reaction. The reactants, intermediates, transition states, and products were optimized at the MPWB1K/6–31G(d,p) level. The single-point energies were performed at the MPWB1K/6–311+G(3df,2p) level. The profiles of the potential energy surfaces were constructed and the rate constants of the reaction steps were analyzed. The possible reaction mechanisms for the ozonolysis intermediates in real atmosphere are also discussed. Based on quantum chemistry information, the rate constants were calculated using Rice–Ramsperger–Kassel–Marcus (RRKM) theory and the canonical variational transition-state theory (CVT) with small curvature tunneling effect (SCT). Arrhenius equations of rate constants over the temperature range of 200–800 K are provided, and the lifetimes of the reaction species in the troposphere were estimated according to rate constants.


2014 ◽  
Vol 92 (9) ◽  
pp. 814-820 ◽  
Author(s):  
Yan Zhao ◽  
Xiaomin Sun ◽  
Wenxing Wang ◽  
Laixiang Xu

The mechanism for OH radical initiated atmospheric photoxidation reaction of ethyl acetate was carried out by using the density functional theory method. Geometries have been optimized at the B3LYP level with a standard 6-31G(d,p) basis set. The single-point energy calculations have been performed at the MP2/6-31G(d), MP2/6-311++G(d,p), and CCSD(T)/6-31G(d) levels, respectively. All of the possible degradation channels involved in the oxidation of ethyl acetate by OH radicals have been presented and discussed. Among the five possible hydrogen abstraction pathways of the reaction of ethyl acetate with OH radicals, the hydrogen abstractions from the C1–H3 and C2–H5 bonds are the dominant reaction pathways due to the low potential barriers and strong exothermicity. The β-ester rearrangement of IM6 is energetically favorable but is not expected to be important. The α-ester rearrangement reaction and O2 direct abstraction from IM17 are the more favorable pathways and are strongly competitive. In addition, the α-ester rearrangement reaction is confirmed to be a one-step process. Acetic acid, formic acetic anhydride, acetoxyacetaldehyde, and acetic anhydride are the main products for the reaction of ethyl acetate with OH radicals.


2013 ◽  
Vol 91 (4) ◽  
pp. 241-247 ◽  
Author(s):  
Yan Zhao ◽  
Haitao Sun ◽  
Renjun Wang ◽  
Fei Gao

The reaction mechanisms of vinyl acetate with OH radicals in the atmosphere have been studied using the density functional theory method. The geometry parameters and frequencies of all of the stationary points are calculated at the MPWB1K level with the 6-31G(d,p) basis sets. The single-point energy calculations are carried out at the MPWB1K/6-311+G(3df,2pd) level. The detailed profiles of the potential energy surfaces for the reactions are constructed. Two OH addition and three H abstraction reaction pathways are considered for the reaction of vinyl acetate with OH radicals. The theoretical study shows that the most energetically favorable isomer is that of OH addition to the terminal carbon positions (C1 atom). The α-ester rearrangement, which is characteristic of ester oxidation processes, is confirmed to be thermodynamically and kinetically favorable. The main products of the OH-initiated atmospheric oxidation of vinyl acetate are formaldehyde, formic acetic anhydride, and acetic acid.


2009 ◽  
Vol 9 (10) ◽  
pp. 3357-3369 ◽  
Author(s):  
T. Kurtén ◽  
T. Berndt ◽  
F. Stratmann

Abstract. Recent experimental findings indicate that HSO5 radicals may play a key role in the nucleation of atmospheric SO2 oxidation products. HSO5 radicals are metastable intermediates formed in the SO2 oxidation process, and their stability and lifetime are, at present, highly uncertain. Previous high-level computational studies have predicted rather low stabilities for HSO5 with respect to dissociation into SO3+HO2, and have predicted the net reaction HSO3+OH→SO3+HO2 to be slightly exothermal. However, these studies have not accounted for hydration of HSO5 or its precursor HSO3. In this study, we have estimated the effect of hydration on the stability and lifetime of HSO5 using the advanced quantum chemical methods CCSD(T) and G3B3. We have computed formation energies and free energies for mono- and dihydrates of OH, HSO3, HSO5, SO3 and HO2, and also reanalyzed the individual steps of the HSO3+O2→HSO5→SO3+HO2 reaction at a higher level of theory than previously published. Our results indicate that hydration is likely to significantly prolong the lifetime of the HSO5 intermediate in atmospheric conditions, thus increasing the probability of reactions that form products with more than one sulfur atom. Kinetic modeling indicates that these results may help explain the experimental observations that a mixture of sulfur-containing products formed from SO2 oxidation by OH radicals nucleates much more effectively than sulfuric acid taken from a liquid reservoir.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhandong Wang ◽  
Mikael Ehn ◽  
Matti P. Rissanen ◽  
Olga Garmash ◽  
Lauriane Quéléver ◽  
...  

AbstractOxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6–C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.


2017 ◽  
Vol 41 (18) ◽  
pp. 10259-10271 ◽  
Author(s):  
S. Ponnusamy ◽  
L. Sandhiya ◽  
K. Senthilkumar

The atmospheric fate of 1,3,5-trimethylbenzene is determined by OH-radical addition, and subsequent bicyclic peroxy radical ring closure and ring breaking pathways.


Author(s):  
Junfang Yao ◽  
Yanan Sun ◽  
Yizhen Tang ◽  
yunju zhang ◽  
Wenzhong Wu ◽  
...  

4-(2-Methoxyethyl) phenol (MEP) is an significant methoxypheolic compound, which has been shown to play an important role in the formation of secondary organic aerosols(SOA). The present work focuses on the gas-phase oxidation mechanism and kinetics of MEP and OH radical by the density functional theory (DFT). Energetically favourable reaction channels and feasible products were identified. The initial reactions of MEP with OH radical have two different channels: OH addition and H abstraction. Subsequent reaction schemes of main intermediates in the presence of O2 and NOx are investigated using quantum chemical methods at M06-2X/6-311++G(3df,2p)//M06-2X/6-311+G(d,p) level. Ketene, Phenyldiketones and nitrophenol compounds are demonstrated to be possible oxidation products. The total rate constant(1.69×10-11 cm3 molecule-1 s-1) and individual rate constant are calculated using the traditional transition state (TST) theory at 298K and 1atm. The lifetime of MEP is estimated to be 16.4 hours, which provides a comprehensive explanation for atmospheric oxidation pathway of MEP and shows MEP would be removed by OH radical in the atmosphere.


2011 ◽  
Vol 89 (11) ◽  
pp. 1419-1427 ◽  
Author(s):  
Yuan Bao ◽  
Xiaoyan Sun ◽  
Xiaomin Sun ◽  
Jingtian Hu

Diethyl phthalate (1,2-benzenedicarboxylic acid diethyl ester, DEP) is one of a group of widely used plasticizers, which can lead to serious environmental problems. Because of manufacturing and application, DEP can be released into the atmosphere where it can undergo transport and chemical transformation. To assess the atmospheric behavior of pollutants, it is critical to know their atmospheric reactions. In this paper, the reaction mechanism and possible oxidation products for the OH-initiated atmospheric reaction of DEP were theoretically investigated by using the density functional theory (DFT) method. The geometries and frequencies of the reactants, intermediates, transition states, and products were calculated at the MPWB1K/6–31+G(d,p) level, and the energetic parameters were further refined by the MPWB1K/6–311+G(3df,2p) method. The present study shows that H abstractions from the CH3 and CH2 groups, as well as OH addition to the benzene ring, are energetically favorable reaction pathways for the reaction of DEP with OH radicals. Detailed degradation products are provided.


Sign in / Sign up

Export Citation Format

Share Document