Direct Synthesis of Aromatic Imine Schiff Bases from β-Phenol Hydroxy Ketone

2021 ◽  
Vol 18 ◽  
Author(s):  
Chang Liu ◽  
Haomin Wu ◽  
Feng Feng ◽  
Wenyuan Liu ◽  
Xueyang Jiang

: A facile methodology has been developed to build carbon nitrogen double bond from ketones promoted by the hydroxyl groups in β-phenol hydroxy ketone. It is noteworthy that the halogenated β-phenol hydroxy ketone can chemoselectively react with amine to afford halogenated phenol imine. It is suitable for certain natural products and also suitable for water-based heteroamines. The method is low toxicity, widely applicable. This strategy is usually used to obtain moderate to good yields of aromatic amine Schiff base.

2020 ◽  
Vol 23 (2) ◽  
pp. 111-118
Author(s):  
Zhiping Che ◽  
Jinming Yang ◽  
Di Sun ◽  
Yuee Tian ◽  
Shengming Liu ◽  
...  

Background: It is one of the effective ways for pesticide innovation to develop new insecticides from natural products as lead compounds. Quinine, the main alkaloid in the bark of cinchona tree as well as in plants in the same genus, is recognized as a safe and potent botanical insecticide to many insects. The structural modification of quinine into 9R-acyloxyquinine derivatives is a potential approach for the development of novel insecticides, which showed more toxicity than quinine. However, there are no reports on the insecticidal activity of 9Racyloxyquinine derivatives to control Mythimna separata. Methods: Endeavor to discover biorational natural products-based insecticides, 20 novel 9Racyloxyquinine derivatives were prepared and assessed for their insecticidal activity against M. separata in vivo by the leaf-dipping method at 1 mg/mL. Results: Among all the compounds, especially derivatives 5i, 5k and 5t exhibited the best insecticidal activity with final mortality rates of 50.0%, 57.1%, and 53.6%, respectively. Conclusion: Overall, a free 9-hydroxyl group is not a prerequisite for insecticidal activity and C9- substitution is well tolerated; modification of out-ring double-bond is acceptable, and hydrogenation of double-bond enhances insecticidal activity; Quinine ring is essential and open of it is not acceptable. These preliminary results will pave the way for further modification of quinine in the development of potential new insecticides.


1990 ◽  
Vol 55 (12) ◽  
pp. 2874-2879 ◽  
Author(s):  
Peter Ertl

Photoisomerization mechanism in model retinal-like protonated Schiff base pentadieniminium was investigated by using MNDO method with configuration interaction. Isomerizations around various double bonds were studied and twisted biradical geometries in S0 and S1 states were optimized. Photoisomerization proceeds exclusively around the central double bond where the twisted S1 state is strongly stabilized and the S0-S1 gap is minimal.


2021 ◽  
Vol 19 (1) ◽  
pp. 772-784
Author(s):  
Moamen S. Refat ◽  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Mohamed I. Kobeasy ◽  
Rozan Zakaria ◽  
...  

Abstract This article aimed at the synthesis and molecular docking assessment of new diimine Schiff base ligand, namely 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxyvinyl)hydrazono) methyl)-6-methoxyphenol (methoxy-diim), via the condensation of 1-(4-chloro-phenyl)-2-hydrazino-ethenol compound with 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxy vinyl) hydrazono)methyl)-6-methoxyphenol in acetic acid as well as the preparation of new binuclear complexes of Co(ii), Ni(ii), Cu(ii), and Zn(ii). The following synthesized complexes were prepared in a ratio of 2:1 (metal/ligand). The 1H-NMR, UV-Vis, and FTIR spectroscopic data; molar conductivity measurements; and microanalytical, XRD, TGA/DTG, and biological studies were carried out to determine the molecular structure of these complexes. According to the spectroscopic analysis, the two central metal ions were coordinated with the diamine ligand via the nitrogen of the hydrazine and oxygen of the hydroxyl groups for the first metal ions and via the nitrogen of the hydrazine and oxygen of the phenol group for the second metal ions. Molecular docking for the free ligand was carried out against the breast cancer 3hb5-oxidoreductase and the 4o1v-protein binding kidney cancer and COVID-19 protease, and good results were obtained.


1962 ◽  
Vol 3 (26) ◽  
pp. 1269-1274 ◽  
Author(s):  
D.Y. Curtin ◽  
C.G. McCarty

1987 ◽  
Vol 40 (10) ◽  
pp. 1777 ◽  
Author(s):  
AF Hegarty ◽  
P Rigopoulos ◽  
JE Rowe

Rate data for the reaction of a series of benzohydrazonoyl halides with pyrrolidine and butan- 1-amine at 303 K are presented. Linear Hammett plots were obtained with each amine. The mechanism of the reactions and the stereochemical outcome of these displacements at the carbon-nitrogen double bond are discussed.


2021 ◽  
Author(s):  
Wangjing Ma ◽  
Bonan Liu ◽  
Duanda Wang ◽  
Jun Zhao ◽  
Lu Zhang ◽  
...  

Carbon–carbon double bond (CCDB) isomerization is a method for synthesizing new organic compounds from olefins and their derivatives, which was based on C=C migration along carbon chain and cis/trans transform, and it plays a vital role in the fields of organic synthesis, synthesis of daily chemicals, raw oil’s development and synthesis of natural products and so on. In this paper, advances of five types of catalytic methods for CCDB of olefins and their derivatives since the 1960s were discussed in detail; Based on his recent work, the author mainly introduces the application and development of photocatalysis in CCDB of olefins and their derivatives.


Sign in / Sign up

Export Citation Format

Share Document