1'-methylspiro[indoline-3,4'-piperidine] Derivatives: Design, Synthesis, Molecular Docking and Anti-tumor Activity Studies

Author(s):  
Junjian Li ◽  
Lianbao Ye ◽  
Yuanyuan Wang ◽  
Ying Liu ◽  
Xiaobao Jin ◽  
...  

Background: Spirocyclic indoline compounds widely exist in numerous natural products with good biological activities and some drug molecules in many aspects. In recent years, it has attracted extensive attention as potent anti-tumor agents in the fields of pharmacology and chemistry. Objective: In this study, we focused on designing and synthesizing a set of novel 1'-H-spiro[indole-3,4'-piperidine] derivatives, which were evaluated by preliminary bioactivity experiment in vitro and molecular docking. Method: The key intermediate 1'-methylspiro[indoline-3,4'-piperidine] (B4) reacted with benzenesulfonyl chloride with different substituents under alkaline condition to obtain its sulfonyl derivatives (B5-B10). We evaluated their antiproliferative activities against A549, BEL-7402 and HeLa cells by MTT assay. We performed the CDOCKER module in Discovery Studio 2.5.5 software for molecular modeling of compound B5, and investigated the binding of compound B5 with the target proteins from PDB database. Results: The results indicated that compounds B4-B10 exhibited good antiproliferative activities against the above three types of cells, in which compound B5 with chloride atom as electron-withdrawing substituent on a phenyl ring showed the highest potency against BEL-7402 cells (IC50=30.03±0.43 μg/mL). By binging of the prominent bioactive compound B5 to CDK, c-Met, EGFR protein crystals, The binding energy of B5 with these three types receptors are -44.3583 kcal/mol, - 38.3292 kcal/mol, -33.3653 kcal/mol respectively. Conclusion: Six 1'-methylspiro[indoline-3,4'-piperidine] derivatives were synthesized and evaluated against BEL-7402, A- 549, HeLa cell lines. Compound B5 showed significant inhibition on BEL-7402 cell lines. Molecular docking revealed that B5 showed good affinity by the good fitting between B5 and these three targets with amino acid residues in active sites which encourage us to conduct further evaluation such as the kinase experiment.

2019 ◽  
Vol 16 (6) ◽  
pp. 696-710
Author(s):  
Mahmoud Balbaa ◽  
Doaa Awad ◽  
Ahmad Abd Elaal ◽  
Shimaa Mahsoub ◽  
Mayssaa Moharram ◽  
...  

Background: ,2,3-Triazoles and imidazoles are important five-membered heterocyclic scaffolds due to their extensive biological activities. These products have been an area of growing interest to many researchers around the world because of their enormous pharmaceutical scope. Methods: The in vivo and in vitro enzyme inhibition of some thioglycosides encompassing 1,2,4- triazole N1, N2, and N3 and/or imidazole moieties N4, N5, and N6. The effect on the antioxidant enzymes (superoxide dismutase, glutathione S-transferase, glutathione peroxidase and catalase) was investigated as well as their effect on α-glucosidase and β-glucuronidase. Molecular docking studies were carried out to investigate the mode of the binding interaction of the compounds with α- glucosidase and β -glucuronidase. In addition, quantitative structure-activity relationship (QSAR) investigation was applied to find out the correlation between toxicity and physicochemical properties. Results: The decrease of the antioxidant status was revealed by the in vivo effect of the tested compounds. Furthermore, the in vivo and in vitro inhibitory effects of the tested compounds were clearly pronounced on α-glucosidase, but not β-glucuronidase. The IC50 and Ki values revealed that the thioglycoside - based 1,2,4-triazole N3 possesses a high inhibitory action. In addition, the in vitro studies demonstrated that the whole tested 1,2,4-triazole are potent inhibitors with a Ki magnitude of 10-6 and exhibited a competitive type inhibition. On the other hand, the thioglycosides - based imidazole ring showed an antioxidant activity and exerted a slight in vivo stimulation of α-glucosidase and β- glucuronidase. Molecular docking proved that the compounds exhibited binding affinity with the active sites of α -glucosidase and β-glucuronidase (docking score ranged from -2.320 to -4.370 kcal/mol). Furthermore, QSAR study revealed that the HBD and RB were found to have an overall significant correlation with the toxicity. Conclusion: These data suggest that the inhibition of α-glucosidase is accompanied by an oxidative stress action.


Author(s):  
Laís Folquitto ◽  
Thiago de Souza ◽  
Jaqueline Januario ◽  
Isadora Nascimento ◽  
Brenda Brandão ◽  
...  

Considering the promising antitumor effects of compounds with dual anti-inflammatory and antiproliferative activities, thus benzophenones analogs (2-7) were evaluated on in vivo antiinflammatory assay and molecular docking analysis. Those with the best molecular docking results were in vitro evaluated on cyclooxygenase (COX) enzymes and tested regarding antiproliferative activity. All derivatives displayed in vivo anti-inflammatory activity. Among them, the substances 2’-hydroxy-4’-benzoylphenyl-β-D-glucopyranoside (4), 4-hydroxy-4’-methoxybenzophenone (5) and 4’-(4’’-methoxybenzoyl)phenyl-β-D-glucopyranoside (7) showed the best values of Glide Score in COX-2 docking evaluation and 4 and 5 selectively inhibited COX-2 and COX-1 in vitro enzymatic assay, respectively. Thus, 4 and 5 were tested against breast cancer (MCF-7, MDA‑MB-231, Hs578T) and non-small-cell-lung cancer (A549) cell lines. The estrogen-positive MCF-7 cell line was more responsive compared to other tested cell lines. They induced cell cycle arrest at G1/S transition in MCF-7 cell line once there was an increase in G0/G1 population with concomitant reduction of S population. The antiproliferative activity of these substances on MCF-7 was associated with their ability to inhibit cyclin E expression, a critical regulator of G1/S transition. Taken together, the data indicate that 4 and 5 have dual anti-inflammatory and antiproliferative activities and support further studies to evaluate their antitumor potential.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bijaya Pant ◽  
Pusp Raj Joshi ◽  
Sabitri Maharjan ◽  
Laxmi Sen Thakuri ◽  
Shreeti Pradhan ◽  
...  

From the medicinal orchid Dendrobium chryseum Rolfe, which is used in traditional and folk Chinese medicine, the protocorms were raised in Murashige and Skoog (MS) media in three strengths, full strength (FMS), half strength (1/2 MS), and quarter strength (1/4 MS), with or without the phytohormones 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) and coconut water (CW). The comparative cytotoxic activities of the wild and in vitro-raised protocorms were evaluated in human cervical carcinoma (HeLa) and human glioblastoma (U251) cell lines by MTT assay. In in vivo and in vitro, the methanol extracts of D. chryseum showed significant cytotoxic activities. Significant growth inhibition (%) and potent IC50 values were demonstrated in HeLa cell lines (49.79% (210.5 μg/mL) for in vitro-raised Dendrobium chryseum (DCT) versus 46.97% (226.5 μg/mL) for wild Dendrobium chryseum (DCW)). Similarly, activities against U251 cell lines exhibited also significant inhibition (28.76% (612.54 μg/mL) for DCW and 17.15% (1059.92 μg/mL) for DCT). The cytotoxic activities of both, wild and tissue-cultured samples, were superior in HeLa cells. In U251 cells, the wild sample was more active than the tissue-cultured one with a moderate cytotoxic effect. Hence, protocorm culture may therefore be a promising future tool for producing pharmacologically bioactive compounds in medicinal orchids. Such sustainable technology approach will minimize the pressure on the natural population of threatened but commercially important medicinal orchids.


Author(s):  
Mamatha S. V ◽  
S. L. Belagali ◽  
Mahesh Bhat ◽  
Vijay M. Kumbar

Background: Coumarin and benzophenone possess a vast sphere of biological activities whereas thiazoles display various pharmacological properties. Hence we focused on incorporation of coumarin and thiazole core to the benzophenone skeleton to enhance the bioactivity anticipating their interesting biological properties. Objective: The objective of the current work is synthesis and biological evaluation of a novel series of coumarin fused thiazole derivatives. Methods: A novel series of Coumarin conjugated thiazolyl acetamide hybrid derivatives were synthesized by multistep reaction sequence and were characterized by the FT-IR, LCMS and NMR spectral techniques. The newly synthesized compounds were screened for anticancer activity by in-silico and in-vitro methods. The cytotoxicity of the synthesized unique compounds had been executed for two different cancer cell lines MCF-7 (Breast cancer) and KB (Oral cancer) in comparison with standard paclitaxel by MTT assay. Results: The compound 7f is the potent motif with an acceptable range of IC 50 values for anticancer activity were 63.54 µg/ml and 55.67 µg/ml, against the MCF-7 and KB cell lines, respectively. Molecule docking model revealed that this compound formed three conventional hydrogen bonds with the active sites of the amino acids MET 769, ARG 817 and LYS 721. Conclusion: Compound 7f with two methyl groups on the phenoxy ring and one 4-position methoxy group on the benzoyl ring, showed a significant cytotoxic effect. An advantageous level of low toxicity against normal cell line (L292) by MTT assay was determined.


2018 ◽  
Vol 42 (1) ◽  
pp. 574-586 ◽  
Author(s):  
Kazem Karami ◽  
Moloud Alinaghi ◽  
Zahra Amirghofran ◽  
Janusz Lipkowski ◽  
Amir Abbas Momtazi-borojeni

The synthesis, characterization and biological activities of a saccharinate-bridged palladacyclic dimer are reported in this work.


2020 ◽  
Vol 20 (1) ◽  
pp. 70-83 ◽  
Author(s):  
Mohamed A. Tantawy ◽  
Farid M. Sroor ◽  
Magda F. Mohamed ◽  
Mostafa E. El-Naggar ◽  
Fatma M. Saleh ◽  
...  

Background: Chalcones are naturally occurring compounds found in various plant species which are widely used for the traditional popular treatments. Chalcones are distinguished secondary metabolites that are reported to display diverse biological activities such as antiviral, antiplatelet, anti-inflammatory, anticancer, antibacterial and antioxidant agents. The presence of a,ß-unsaturated carbonyl group in chalcones is assumed to be responsible for their bioactivity. In addition, heterocyclic compounds having nitrogen such as isoquinolines are of considerable interest as they constitute the core structural element of many alkaloids that have enormous pharmacological activities. Objective: The objective of this study is the synthesis and biological activity of novel chalcones incorporating thiadiazolyl isoquinoline as potential anticancer candidates. Different genetic tools were used in an attempt to know the mechanism of action of this compound against breast cancer. Methods: An efficient one pot synthesis of novel chalcones incorporating thiadiazolyl isoquinoline has been developed. The cytotoxic activity of the novel synthesized compounds was performed against four different kinds of cancer cell lines. Results: Among all the tested derivatives, chalcone 3 has the best cytotoxic profile against A549, MCF7, and HeLa cell lines, with IC50s (66.1, 51.3, and 85.1μM, respectively). Molecular docking studies for chalcone 3 revealed that CDK2, and EGFRTK domains have strong binding affinities toward the novel chalcone 3, while tubulin-colchicine-ustiloxin, and VEGFRTK domains illustrated moderate mode of binding. Conclusion: We have developed an efficient method for the synthesis of novel chalcones incorporating thiadiazolyl isoquinoline. All compounds showed better cytotoxicity results against four kinds of cancer cell lines (A549, MCF7, HCT116, and HELA cells). The results depicted that chalcone 3 has a high and promising cytotoxic effect against HELA cell line and the mechanism of cytotoxicity was widely studied through different theoretical and experimental tools. Thus, the newly synthesized derivative 3 can be utilized as a novel chemotherapeutic compound for cervical carcinoma.


2019 ◽  
Vol 7 (4) ◽  
pp. 91-96
Author(s):  
Isra'a Al-sobhi ◽  
◽  
Rawan Al-Ghabban ◽  
Soad Shaker Ali ◽  
Jehan Al-Amri ◽  
...  

2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


2020 ◽  
Vol 21 (1) ◽  
pp. 42-60
Author(s):  
Farah Nawaz ◽  
Ozair Alam ◽  
Ahmad Perwez ◽  
Moshahid A. Rizvi ◽  
Mohd. Javed Naim ◽  
...  

Background: The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy. Objective: To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line). Methods: In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis. Results: Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib. Conclusion: The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.


Sign in / Sign up

Export Citation Format

Share Document