One-pot green synthesis of novel thiazolepyridine conjugated benzamides as anti-bacterial agents and their molecular modelling studies

Author(s):  
Chepyala Karuna ◽  
Ch. Venkata Ramana Reddy ◽  
Riyaz Syed ◽  
Ayman M. Atta

Background: Thiazolepyridine scaffold is considered to be one of the prime constituents of many biologically significant chemical entities. Methods: A set of novel thiazolepyridine derived heterocyclic hybrids, N-phenyl-2-(thiazolo[5,4-b]pyridin-2-yl)benzamides were synthesized by one-pot three-component reaction of 3-aminopyridine-2-thiol, diethyl phthalate, and anilines in a mixture of ethanol and water using HCl as a catalyst. The developed synthetic protocol, which is sustainable and economical, includes the easy work-up procedure, non-toxic, shorter reaction times. This procedure leads to high reaction yields. Results: The synthesized derivatives were screened for their antibacterial activity on Staphylococcus aureus and Bacillus subtilis strains, and 4b,4e, and 4f exhibited moderate bacterial growth inhibition. Similarly, physiochemical properties and different target-based bioactivity scores have been predicted, and almost all the synthesized derivatives scores were found in the accepted range when compared with the standard values. Conclusion: Further structural modifications of the titled compounds would help to understand the structure-activity relations, to design safe and effective lead-like antibacterial agents.

2018 ◽  
Vol 42 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Reza Teimuri-Mofrad ◽  
Somayeh Esmati ◽  
Masoumeh Rabiei ◽  
Mahdi Gholamhosseini-Nazari

A novel heterogeneous silica nanosphere-supported ferrocene-containing ionic liquid catalyst (SiO2@Imid-Cl@Fc) was designed and synthesised and was systematically characterised by Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis. The catalytic activity of the SiO2@Imid-Cl@Fc catalyst was tested in a one-pot, three-component reaction of malononitrile and kojic acid with 15 aromatic aldehydes at room temperature under ultrasound irradiation. The products were pyrano[3,2-b]pyran derivatives, four of which are new. The catalyst exhibited good catalytic performance over short reaction times (15–20 min) and could be recycled at least five times without significant loss of activity.


2018 ◽  
Vol 62 (1) ◽  
Author(s):  
Jabbar Khalafy ◽  
Ramin Javahershenas

<p>A green approach for the synthesis of polyfunctionalized pyrrolo[2,3-<em>d</em>]pyrimidine derivatives was successfully achieved by a one-pot, three-component reaction of arylglyoxals, 6-amino-1,3-dimethyluracil and barbituric acid derivatives in the presence of tetra-<em>n</em>-butylammonium bromide (TBAB) (5 mol%) as the catalyst in ethanol at 50 °C. This protocol has many advantages such as high yields (73-95%), green and simple procedure, short reaction times, easy work-up, mild reaction conditions and general applicability.</p>


2019 ◽  
Vol 16 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Bharatkumar M. Sapkal ◽  
Prakash K. Labhane ◽  
Shamrao T. Disale ◽  
Dhananjay H. More

An efficient synthesis of Hantzsch 1,4-dihydropyridines via a one-pot three-component reaction of ethyl acetoacetate, substituted aldehydes and ammonium acetate in the presence of ZnO@SnO2 mixed metal oxide nanoparticles under solvent-free conditions has been reported. Compare to the reported reactions, this method shows attractive aspects such as cleaner reaction profile, shorter reaction times, minimum catalyst loading and high yields. Isolated catalysts were reused for new reactions without considerable loss of their catalytic activity.


2018 ◽  
Vol 15 (2) ◽  
pp. 256-266 ◽  
Author(s):  
Fan Yun ◽  
Chunhui Cheng ◽  
Jingxuan Li ◽  
Pingwah Tang ◽  
Qipeng Yuan

Aim and Objective: α-Arylglycines belong to an important class of non-proteinogenic amino acids. Petasis 3-component, one-pot reaction lends itself to be suitable for the synthesis of α-Arylglycines. Because of the low reactivity, Petasis reaction requires long reaction time. Our objective is to use ultrasound irradiation to accelerate this versatile Petasis' synthesis of α-Arylglycines. Materials and Methods: Ultrasound irradiation as a physical tool to accelerate the Petasis 3-component reaction without any auxiliary catalyst can significantly shorten the reaction time. The operation is simple. It can be applied to a wide range of substrates. In order to highlight the remarkable utility of the ultrasound in Petasis reaction, we have compared side-by-side the reactivity between the reaction with ultrasound and the one without ultrasound. Results: Using ultrasound, the reaction times of Petasis reactions with various amine substrates including primary and secondary amines, heterocyclic amines, with a wide variety of boronic acids having different substituents (activating and deactivating groups) in the phenyl rings, and with glyoxylic acid and salicylic aldehyde were shortened from 5 to more than 20-fold. Conclusion: We have discovered the first examples of an efficient ultrasound-promoted approach for Petasis reaction to prepare a series of α-arylglycines in high yields and in excellent purities. The low reactivity of the reactions in this study were significantly enhanced by the ultrasound irradiation. By virtue of the acceleration and the operational simplicity, the present ultrasound assisted Petasis reaction can find applications in the synthetic areas of the already widely used Petasis three-component reaction.


2021 ◽  
Vol 18 ◽  
Author(s):  
Abolfazl Olyaei ◽  
Nilufar Rahmani ◽  
Mahdieh Sadeghpour ◽  
Amir Mohamadi

: A clean and efficient one-pot protocol for the synthesis of a series of new 2-hydroxy-3-((3-aryl)(heteroarylamino)methyl)naphthalene-1,4-dione derivatives has been developed by the three-component reaction of 2-hydroxynaphthalene-1,4-dione, aromatic aldehydes and heterocyclic amines at 90 oC under solvent and catalyst-free conditions. The procedure avoids the use of toxic solvents, tedious work-up, catalyst and purification of the products by chromatographic methods. Simple operation, short reaction times, generating the desired compounds in high to excellent yields and an environmentally benign method are advantages of this protocol.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Zahed Karimi-Jaberi ◽  
Marziyeh Jokar ◽  
S. Zoleykha Abbasi

Two efficient and direct procedures have been developed for the preparation of 1-amidoalkyl-2-naphthols by a one-pot condensation of aldehydes, 2-naphthol, and amides in the presence of trichloroacetic acid or cobalt (II) chloride as catalyst. The reactions were carried out under solvent-free media. High yields, short reaction times, easy workup of the catalyst are advantages of these procedures.


2017 ◽  
Vol 41 (3) ◽  
pp. 136-138 ◽  
Author(s):  
Sabereh Bougan ◽  
Alireza Hassanabadi

A green and efficient synthesis of the title compounds has been achieved in a one-pot, three-component reaction of 4-hydroxycoumarin and aromatic aldehydes with methyl carbamate catalysed by p-toluenesulfonic acid in aqueous media to afford 4-aryl-3,4-dihydrochromeno[3,4-e][1,3]oxazine-2,5-diones in excellent yields. The salient features of this protocol are: short reaction times, high yields and absence of any hazardous organic solvent. Consequently, this procedure could be classified as green chemistry.


2012 ◽  
Vol 9 (4) ◽  
pp. 2037-2043 ◽  
Author(s):  
Abolghasem Davoodnia ◽  
Bahareh Razavi ◽  
Niloofar Tavakoli-Hoseini

Silica gel-supported polyphosphoric acid (PPA-SiO2) was found to be highly efficient, eco-friendly and recyclable heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines through one-pot three-component reaction of acetophenone, aryl aldehydes, and ammonium acetate under solvent-free conditions. This method has several advantages, such as simple procedure with an easy work-up, short reaction times, and high yields. Furthermore, the catalyst could be recycled after a simple work-up, and used at least three times without substantial reduction in its catalytic activity.


Synlett ◽  
2019 ◽  
Vol 31 (03) ◽  
pp. 267-271 ◽  
Author(s):  
Firouz Matloubi Moghaddam ◽  
Atiyeh Moafi ◽  
Behzad Jafari ◽  
Alexander Vilinger ◽  
Peter Langer

A regio- and diastereoselective synthesis of 2,3-dihydro-10b′H-spiro[indeno[1,2-b]quinoxaline-11,1′-pyrrolo[2,1-a]isoquinoline]-2′,3′-diylbis(phenylmethanone) derivatives containing four contiguous chiral stereocenters was achieved through 1,3-dipolar cycloaddition of isoquinolinium N-ylides in a one-pot three-component reaction. The desired products were obtained in short reaction times and in moderate to high yields (up to 92%) under relatively mild reaction conditions. The structure and relative stereochemistry of the desired product was confirmed by X-ray diffraction analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sayyed Mostafa Habibi-Khorassani ◽  
Malek Taher Maghsoodlou ◽  
Mehdi Shahraki ◽  
Sadegh Talaiefar ◽  
Jasem Aboonajmi

Sodium acetate was applied as an efficient catalyst for the one-pot, three-component condensation reactions consisting of 4-nitrobenzaldehyde 2, malononitrile 3, and thiobarbituric acid 1. Use of nontoxic reaction components, short reaction times, environmental, easy work-up, and high yields are some remarkable advantages of this method. Kinetics and mechanism of the reaction were spectrally studied and the second order rate constant (kovr = k1) was automatically calculated by the standard equations contained within the program. The second order rate constant [Ln(kovr = k1), Ln(kovr = k1)/T] that depended on reciprocal temperature was in good agreement with the Arrhenius and Eyring equations, respectively. This data provided the suitable plots for calculating the activation energy and parameters (Ea, ΔG‡, ΔS‡, and ΔH‡) of the reaction. Furthermore, from studying the effects of solvent, concentration, and catalyst on the reaction rate, useful information was obtained regarding the mechanism. The results showed that the first step of the reaction mechanism is a rate determining step (RDS). The proposed mechanism was confirmed in accordance with the experimental data and also the steady state approximation.


Sign in / Sign up

Export Citation Format

Share Document