HLAs in Autoimmune Diseases: Dependable Diagnostic Biomarkers?

2019 ◽  
Vol 15 (4) ◽  
pp. 269-276 ◽  
Author(s):  
Elham Rajaei ◽  
Mohammad Taha Jalali ◽  
Saeid Shahrabi ◽  
Ali Amin Asnafi ◽  
Seyed Mohammad Sadegh Pezeshki

Background: The process of antigen presentation to immune cells is an undeniable contributor to the pathogenesis of autoimmune diseases. Different studies have indicated several factors that are related to autoimmunity. Human Leukocyte Antigens (HLAs) are among such factors, which have a key role in autoimmunity because of their involvement in antigen presentation process. Methods: Relevant English language literature was searched and retrieved from Google Scholar search engine and PubMed database (1996-2018). The following keywords were used: "Human leukocyte antigen", "Behcet’s syndrome", "Rheumatoid arthritis", "Systemic lupus erythematosus", "Type 1 diabetes", "Celiac Disease" and "Autoimmunity". Results: There is a strong association between HLA alleles and autoimmune diseases. For instance, HLA-B alleles and Behcet’s syndrome are strongly correlated, and systemic lupus erythematosus and Type 1 diabetes are related to HLA-DQA1 and HLA-DQB1, respectively. Conclusion: Association between numerous HLA alleles and autoimmune diseases may justify and rationalize their use as biomarkers as well as possible diagnostic laboratory parameters.

Lupus ◽  
2021 ◽  
pp. 096120332110149
Author(s):  
Vivian K Kawai ◽  
Mingjian Shi ◽  
Ge Liu ◽  
QiPing Feng ◽  
WeiQi Wei ◽  
...  

Objectives To test the hypothesis that genetic predisposition to systemic lupus erythematosus (SLE) increases the risk of cardiometabolic disorders. Methods Using 41 single nucleotide polymorphisms (SNPs) associated with SLE, we calculated a weighted genetic risk score (wGRS) for SLE. In a large biobank we tested the association between this wGRS and 9 cardiometabolic phenotypes previously associated with SLE: atrial fibrillation, ischemic stroke, coronary artery disease, type 1 and type 2 diabetes, obesity, chronic kidney disease, hypertension, and hypercholesterolemia. Additionally, we performed a phenome-wide association analysis (pheWAS) to discover novel clinical associations with a genetic predisposition to SLE. Findings were replicated in the Electronic Medical Records and Genomics (eMERGE) Network. To further define the association between SLE-related risk alleles and the selected cardiometabolic phenotypes, we performed an inverse variance weighted regression (IVWR) meta-analysis. Results The wGRS for SLE was calculated in 74,759 individuals of European ancestry. Among the pre-selected phenotypes, the wGRS was significantly associated with type 1 diabetes (OR [95%CI] =1.11 [1.06, 1.17], P-value = 1.05x10−5). In the PheWAS, the wGRS was associated with several autoimmune phenotypes, kidney disorders, and skin neoplasm; but only the associations with autoimmune phenotypes were replicated. In the IVWR meta-analysis, SLE-related risk alleles were nominally associated with type 1 diabetes (P = 0.048) but the associations were heterogeneous and did not meet the adjusted significance threshold. Conclusion A weighted GRS for SLE was associated with an increased risk of several autoimmune-related phenotypes including type I diabetes but not with cardiometabolic disorders.


2005 ◽  
Vol 66 (12) ◽  
pp. 1235-1241 ◽  
Author(s):  
Gisela Orozco ◽  
Peter Eerligh ◽  
Elena Sánchez ◽  
Sasha Zhernakova ◽  
Bart O. Roep ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong-Fei Wang ◽  
Yan Zhang ◽  
Zhiming Lin ◽  
Huoru Zhang ◽  
Ting-You Wang ◽  
...  

AbstractSystemic lupus erythematosus (SLE), a worldwide autoimmune disease with high heritability, shows differences in prevalence, severity and age of onset among different ancestral groups. Previous genetic studies have focused more on European populations, which appear to be the least affected. Consequently, the genetic variations that underlie the commonalities, differences and treatment options in SLE among ancestral groups have not been well elucidated. To address this, we undertake a genome-wide association study, increasing the sample size of Chinese populations to the level of existing European studies. Thirty-eight novel SLE-associated loci and incomplete sharing of genetic architecture are identified. In addition to the human leukocyte antigen (HLA) region, nine disease loci show clear ancestral differences and implicate antibody production as a potential mechanism for differences in disease manifestation. Polygenic risk scores perform significantly better when trained on ancestry-matched data sets. These analyses help to reveal the genetic basis for disparities in SLE among ancestral groups.


Sign in / Sign up

Export Citation Format

Share Document