Trace Determination of Tamoxifen using Optimized Solvent Bar Microextraction and HPLC-UV

2020 ◽  
Vol 16 (8) ◽  
pp. 1068-1073 ◽  
Author(s):  
Persia Behbahani ◽  
Nahid Ghasemi ◽  
Mahnaz Qomi ◽  
Kambiz Tahvildari

Background: Tamoxifen (Soltamox) is an antineoplastic agent and an estrogen receptor antagonist used to treat breast cancer, but have severe side effects such as hot flashes, vaginal discharge, etc. Dose monitoring is a necessity for optimum treatment, to prevent severe adverse effects. Methods: In this study, the solvent bar microextraction method (SBME) was used for preconcentration and microextraction coupled with High-performance liquid chromatography-ultraviolet (HPLC-UV) analysis of tamoxifen. Results: The limit of detection and limit of quantification were 13.3 and 40 μgL-1, respectively. The linear range was between 40 and 10000 μgL-1 with a correlation coefficient of 0.999. The enrichment factor was 169 and the relative standard deviation within-day and between-day were 3.6 and 4.0, respectively. Conclusion: The use of sensitive SBME method coupled with HPLC-UV analysis for detection of tamoxifen at trace level proved to be successful, offering a desirable preconcentration factor, and a costeffective and green set-up for determining its rate of elimination from cancer patients and wastewater.

2018 ◽  
Vol 15 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Persia Behbahani ◽  
Mahnaz Qomi ◽  
Nahid Ghasemi ◽  
Kambiz Tahvildari

Background: Ephedrine, an alpha/beta-adrenergic agonist, is one of the most common doping agents not only among athletes but also the ordinary people, therefore its detection at low trace levels with a sensitive and cost effective method has become a priority to investigate many analytical methods. Objective: In this work, solvent bar microextraction followed by high-performance liquid chromatography (HPLC-UV) was used for extraction and determination of ephedrine at low trace levels from urine samples at optimum condition. Methods: In this study, a designed experiment was carried out using solvent bar microextraction technique, which has been proved to be a green method. This method requires three phases consisting of a donor phase with an alkaline pH, an acceptor phase with an acidic pH, and organic solvent to impregnate the pores of the hollow fiber. The obtained results were used for estimating the optimum ranges for each parameter, analyzing the effect of different parameters, simultaneously. Results: Under optimized circumstances, the preconcentration factor was 129. The calibration curves represented good linearity for urine sample with coefficient estimations higher than 0.9991. The limit of detection and quantitation for ephedrine were 16.7 µg L-1 and 50 µg L-1, respectively. The relative standard deviations of analysis were 3.5% within a day (n=3) and 4.1% between days (n=9). Conclusion: According to the results and previous studies, it can be concluded that the preconcentration factor for ephedrine was the best result ever reported considering selectivity and cost-effectiveness.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 59-65
Author(s):  
Vinita C. Patole ◽  
Shilpa P. Chaudhari ◽  

An attempt was made to develop a simple, selective, rapid and precise high-performance liquid chromatography (HPLC) method for simultaneous estimation of thymol and eugenol. Analysis was performed on a C18 column with the mobile phase consisting of solvent %A (water) and solvent %B (acetonitrile) with the following gradient: 0–1 min, 80 % A, 20 % B; 1–7 min, 40 % A and 60 % B; 7–12 min, 10 % A and 90 % B; and 12–15min, 80 % A and 20 % B at a flow rate of 0.6 mL/min. The compounds were well separated on a Thermo Scientific Hypersil BDS RP C18 column (4.6 mm × 150 mm, dp = 5 µm) and ultraviolet detection at 280 nm. The retention times of eugenol and thymol were 10.5 min and 11.6 min, respectively. Validation of the proposed method was carried out according to the guidelines of the International Council on Harmonization (ICH). The linearity of the method is good for thymol and eugenol over the concentration range of 1–50 ppm, and the r 2 values were 0.9996 for both thymol and eugenol. The calculated limit of detection (LOD) value was 0.5ppm and the limit of quantification (LOQ) value was 1ppm for both the analytes. The intra and interday relative standard deviation (RSD) of the retention time and peak areas was less than 3 %.The established method was appropriate, and the two markers were well resolved, enabling efficient quantitative analysis of thymol and eugenol.


2021 ◽  
Vol 09 ◽  
Author(s):  
Ali Al-Kulabi ◽  
Louis Gooden ◽  
Ijeoma F. Uchegbu

Background: Mycophenolic acid (MPA), an immunosuppressive agent, is used orally to reduce corneal graft rejection. However its oral use is associated with gastrointestinal side effects. Objectives: To prepare MPA nanoparticle eye drops and a validated analytical method. Methods: Aqueous MPA eye drops were prepared by nanoencapsulation of MPA using Nanomerics MET (N-palamitoylN-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) at a MET, MPA ratio of 7.5: 1 g g-1 in the presence of glycerol (2.75% w/w). A validated MPA in-formulation drug substance assay was then developed. Results: MET-MPA formulations were prepared as well as a validated assay. Assay validation parameters for the analysis of MPA in the formulation were satisfactory [Plate count = 16458, Capacity Factor = 2.4, Tailing Factor = 1.02, linearity = 0.999 (0.016 – 0.5 mg mL-1 ), limit of detection = 0.056 mg mL-1 , limit of quantification = 0.17 mg mL-1 , accuracy = 98%, intraday and interday relative standard deviation = 0.45% and 4% respectively]. The candidate formulation (z - average mean = 66 ± 0.4 nm, polydispersity index = 0.12 ± 0.012, drug content = 1.14 ± 0.003 mg mL-1 , zeta potential = +8.5 ± 1.4 mV, pH = 7.4 ± 0.02, osmolarity = 309 ± 1.5 mOSm L-1 , viscosity = 1.04 ± 0.001 mPa.s) was then found to be stable for 14 days with respect to drug content at refrigeration, room and accelerated (40C )temperature and. All other formulation parameters were within the ocular comfort range. Conclusions: A validated assay (ICH and US FDA guidelines) for new MPA nanoparticle eye drops has been developed.


Author(s):  
M. VIJAYA KUMARI ◽  
CH. BALASEKHAR REDDY

Objective: An accurate, rapid economical and straight forward, reliable assay technique was evolved and showed for the evaluation of zanubrutinib using reversed-phase high-performance liquid chromatography. Methods: In the proposed method, efficient chromatographic separation was achieved applying acetonitrile and 0.1% orthophosphoric acid (50:50 v/v) as a mobile phase with a flow of 1 ml/min and the wavelength was observed at 220 nm. Chromatography was administered isocratically at ambient temperature and run time was approximately 6 min and the retention time (Rt) was observed as 4.358 min. Results: The method was justified as per ICH guidelines. System suitability parameters were studied by injecting the quality six fold and results were well under acceptance criteria. Linearity study was administered between 10% and 150% levels, regression coefficient value was observed as 0.999. Limit of detection and limit of quantification were observed as 0.02 μg/ml and 0.2 μg/ml, respectively. Precision was found to be 0.74 for repeatability and 0.68 for intermediate precision. Recovery of the drug was found to be 98–102%, indicates that the recovery is in the acceptable limit. Validation results were found to be satisfactory and the method applicable for bulk and formulation analysis. Hence, it was evident that the proposed method was said to be suitable for regular analysis and quality control of pharmaceutical preparations. Conclusion: The validation results were in good agreement with the acceptable limit. Relative standard deviation values which are <2.0% indicating the accuracy and precision of this method. Assay of retail formulation was administered and found to be 100.24% was present using the above method. Stress conditions of degradation in acidic, alkaline, peroxide, and thermal were studied. This developed method showed reliable, precise, accurate results under optimized conditions.


Author(s):  
VEERASWAMI B ◽  
NAVEEN VMK

Objective: The present paper describes a simple, accurate, and precise reversed-phase high-performance liquid chromatography (HPLC) method for rapid and simultaneous quantification of dolutegravir (DTG) and rilpivirine (RPV) in bulk and pharmaceutical dosage form and rat plasma. Methods: The chromatographic separation was achieved on Phenomenex C18 (150x4.6mm, 5μm). Mobile phase contained a mixture of 0.1% Ortho phosphoric acid and acetonitrile in the rato of 60:40 v/v, flow rate 1.0ml/min and ultraviolet detection at 262nm. Results: The retention time of DTG and RPV was 4.35 min and 7.73 min, respectively. The proposed method shows a good linearity in the concentration range of 10–150 μg/ml for DTG and 5–75 μg/ml for RPV under optimized conditions. Precision and recovery study results are in between 98 and 102%. In the entire robustness conditions, percentage relative standard deviation is <2.0%. Degradation has minimum effect in stress condition and solutions are stable up to 24 h. DTG and RPV drugs are release 98% at 2 h in rat body. Conclusion: This method is validated for different analytical performance parameters like linearity. Precision, accuracy, limit of detection, limit of quantification, robustness, and pharmacokinetic study were determined according to the International Conference of Harmonization (ICH) Q2B guidelines. All the parameters of validation were found in the acceptance range of ICH guidelines. The same method is also applied for plasma samples study in bioanalytical work.


2013 ◽  
Vol 469 ◽  
pp. 444-449
Author(s):  
Yu Zi Liu ◽  
Ying Hao Xing ◽  
Jun Wu

In this study, High Performance Liquid Chromatography (HPLC), combined with Triple Quadruple mass Spectrometry (QQQ) were developed and applied in the analysis of 16 phthalic acid esters (PAEs) in the common drinking water. Qualitative and quantitative analysis were carried out by Multiple Reaction Monitoring (MRM). The method, combined with Solid Phase Extraction, was established to detect the PAEs in drinking water. As showed by the results, 16 PAEs had a good linearity in the range of 1.14~101.4μg/L, with correlation coefficient between 0.996~0.999. The mean recoveries were in the range of 87.53~131.37%, with the relative standard deviation be 0.71~5.09%. The limit of quantification (LOQ) of 16 PAEs were between 1.14~32.51μg/L, with the limit of detection (LOD) be 0.34~10.67μg/L. There were five PAEs which were detected in the range of <1.7~17.2μg/L in bottled water. Some products have some PAEs which havent been shown in the national or the international standard of the drinking water.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Naghi Saadatjou ◽  
Shahab Shariati ◽  
Mostafa Golshekan

A simple and high sensitive preconcentration method based on micelle-mediated extraction followed by high performance liquid chromatography (LC-UV) was developed for preconcentration and determination of trace amounts of bisphenol A (BPA) in aqueous samples. The BPA was quantitatively extracted from aqueous samples in the presence of Triton X-114 as a nonionic surfactant and preconcentrated into the small volume (about 30 μL) of the surfactant-rich phase. Taguchi method, an orthogonal array design (OA16 (45)), was utilized to optimize the various factors affecting the micellar extraction of BPA. The maximum extraction efficiency of BPA was obtained at pH 3, 0.2% (w/v) Triton X-114, and 0.25 mol L−1 sodium acetate. For the preconcentration, the solutions were incubated in a thermostatic water bath at 50°C for 7 min. After centrifuge and separation of aqueous phase, the surfactant-rich phase was diluted with 100 μL acetone and injected in the chromatographic system. Under the optimum conditions, preconcentration factor of 34.9 was achieved for extraction from 10 mL of sample solution and the relative standard deviation (RSD%) of the method was lower than 6.6%. The calibration curve was linear in the range of 0.5–150 μg L−1 with reasonable linearity (r2>0.9987). The limit of detection (LOD) based on S/N = 3 was 0.13 μg L−1 for 10 mL sample volumes. The limit of quantification (LOQ) based on S/N = 10 was 0.43 μg L−1 for 10 mL sample volumes. Finally, the applicability of the proposed method was evaluated by the extraction and determination of BPA in the real samples, and satisfactory results were obtained.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


Sign in / Sign up

Export Citation Format

Share Document