A Comparative Pharmacokinetic Study of Schisandrol B After Oral Administration of Schisandrol B Monomer and Schisandra chinensis Extract

2019 ◽  
Vol 16 ◽  
Author(s):  
Zijing Wu ◽  
Dahu Liang ◽  
Maodi Xu ◽  
Yanhao Liu ◽  
Haitang Xie

Background: Schisandra chinensis Turcz. (Baill.) is a perennial deciduous woody vine plant that is beneficial to all systems of the body. Objective: The goals of the present study were to compare the pharmacokinetics of schisandrol B in rats after oral administration of schisandrol B monomer (10 mg/kg) and S. chinensis extract (equivalent to 10 mg/kg schisandrol B) and to explore interactions among the components in S. chinensis extract. Method: Twelve Sprague-Dawley rats of SPF grade were randomly divided into the monomer and S.chinensis extract groups. Plasma samples were extracted with methyl tert-butyl ether, and chromatographic separation was performed on an Agilent ZORBAX Eclipse XDB-C18 (4.6 × 150 mm, 5 μm) column with the mobile phase consisting of methanol (containing 0.1% formic acid)-water (containing 0.1% formic acid and 5 mmol ammonium acetate). This analysis was achieved by multiple reaction monitoring mode in an electrospray interface. Results: The seven lignans had good linear relationship within the determination range (r>0.9950); the intra- and inter-day precision were < 12.08% and accuracy was 88.64%-111.61%. The pharmacokinetic parameters (T1/2, Tmax, MRT0-∞, CL, AUC0-t, and AUC0-∞) of schisandrol B showed significant differences between the two groups (P < 0.05). Conclusion: The validated method has been successfully applied to the pharmacokinetics of schisandrin, schisandrol B, schisandrin A, schisandrin B, schisandrin C, schisanhenol, and schisantherin A. The pharmacokinetic differences indicate that other components in the extract may increase the absorption of schisandrol B, decrease the rate of elimination, and improve the bioavailability of schisandrol B.

2022 ◽  
Vol 20 (2) ◽  
pp. 411-418
Author(s):  
Wei Wang ◽  
Xuechun Wang ◽  
Qiang Zhang ◽  
Ru Jia ◽  
Chunjie Du ◽  
...  

Purpose: To study the pharmacokinetics of morroniside (MR) and loganin (LG) in rats after oral administration of raw and wine-processed Corni fructus by UPLC-QqQ-MS/MS. Methods: Arctiin (AT) was used as internal standard, and the plasma or tissue samples were extracted twice using ethyl acetate. Electrospray ionization (ESI) negative ion mode was used, and the multiple reaction monitoring mode (MRM) was set in acquisition mode. The extraction and detection method is supported by selectivity, sensitivity, precision, accuracy, stability, extraction, recovery and matrix effect. The non-atrioventricular model of das2.0 software was used to calculate the pharmacokinetic parameters. Results: The absorption rate of MR (PTmax=0.092) and LG (PTmax=0.092) in Corni Fructus after wine-processing was faster in rats. The mean residence time was longer, and distribution of MR (PMRT0~t = 0.294) and LG (PMRT0~t = 0.000) in wine-processed Corni Fructus group increased in liver and kidneys. Conclusion: The proposed method has been successfully validated and is suitable for studying the pharmacokinetics of the two analytes in rats.


Bioanalysis ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 363-372
Author(s):  
Nazlı Erdoğar ◽  
Tuba Reçber ◽  
Alper B İskit ◽  
Erem Bilensoy ◽  
Sedef Kır ◽  
...  

Aim: The assessment of efficacy should be paralleled with extensive pharmacokinetic parameters, and a valid bioanalytical method is a pre-condition for accurate plasma concentration. Materials & methods: A simple, specific, rapid and sensitive LC−MS/MS method has been developed for quantitative analysis of aprepitant in rat plasma. A C18 column was used as stationary phase and the mobile phase consisted of a mixture of formic acid in water and formic acid in acetonitrile. Quantification was performed using multiple reaction monitoring mode. Results: The selectivity, linearity, accuracy, precision, robustness and ruggedness of the method were evaluated in accordance with bioanalytical method validation guideline of ICH and all results were within the acceptable range. Conclusion: The validated LC−MS/MS method was found to be useful for the quantitative analysis of aprepitant in rat plasma samples.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 297
Author(s):  
Essam Ezzeldin ◽  
Muzaffar Iqbal ◽  
Yousif A. Asiri ◽  
Gamal A. E. Mostafa ◽  
Ahmed Y. A. Sayed

Pexidartinib is the first drug approved by the U.S. Food and Drug Administration specifically to treat the rare joint tumor tenosynovial giant cell tumor. In the current study, a validated, selective, and sensitive UPLC-MS/MS assay was developed for the quantitative determination of pexidartinib in plasma samples using gifitinib as an internal standard (IS). Pexidartinib and IS were extracted by liquid-liquid extraction using methyl tert-butyl ether and separated on an acquity BEH C18 column kept at 40 °C using a mobile phase of 0.1% formic acid in acetonitrile: 0.1% formic acid in de-ionized water (70:30). The flow rate was 0.25 mL/min. Multiple reaction monitoring (MRM) was operated in electrospray (ESI)-positive mode at the ion transition of 418.06 > 165.0 for the analyte and 447.09 > 128.0 for the IS. FDA guidance for bioanalytical method validation was followed in method validation. The linearity of the established UPLC-MS/MS assay ranged from 0.5 to 1000 ng/mL with r > 0.999 with a limit of quantitation of 0.5 ng/mL. Moreover, the metabolic stability of pexidartinib in liver microsomes was estimated.


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Rosario Russo ◽  
Angelo Mancinelli ◽  
Michele Ciccone ◽  
Fabio Terruzzi ◽  
Claudio Pisano ◽  
...  

Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.


Author(s):  
Caroline ◽  
Nathania Sie ◽  
Kuncoro Foe ◽  
Senny Yesery Esar ◽  
Maria Anabella Jessica

Objective: A new compound of salicylic acid derivative, namely 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid (3CBB), was synthesized to find a compound exhibiting higher analgesic activity and smaller ulcer irritation than acetylsalicylic acid (ASA). Therefore, this study aimed to investigate the pharmacokinetics of this new compound in rats, following a single dose oral administration of 3CBB (45 mg/kg BW). Methods: Plasma samples of 9 healthy rats were collected before and up to 3 h after its oral administration, following an 18 h fasting period. Plasma concentrations of 3CBB were determined using a validated HPLC-DAD assay. Pharmacokinetic parameters were determined using the compartment model technique. All experiments were carried out in triplicate. Results: The pharmacokinetic parameters of 3CBB obtained were as follows: Tmax= 28.9±1.1 min, Cmax = 0.57±0.02 µg/ml, AUCtotal = 66.3±1.0 µg min/ml, Kel = 0.018±0.002 min-1, and T1/2el = 39.4±3.9 min. The long elimination half-life and low Cmax indicated that 3CBB was extensively distributed in the deep and very deep tissues. This confirmed the unique and special characteristics of a highly lipophilic compound like 3CBB (log P = 3.73). Conclusion: 3CBB demonstrated a slower onset of action and longer elimination time from the body compared to ASA. Thus this new compound is a potential candidate to be developed as a new drug.


2009 ◽  
Vol 1 ◽  
pp. OED.S2857 ◽  
Author(s):  
Ravi S. Talluri ◽  
Ripal Gaudana ◽  
Sudharshan Hariharan ◽  
Ashim K. Mitra

Objective To delineate the plasma pharmacokinetics and determine the corneal uptake of valine based stereoisomeric dipeptide prodrugs of acyclovir (ACV) in rats. Methods Male Sprague-Dawley rats were used for the study. Pharmacokinetics of ACV, L-valine-acyclovir (LACV), L-valine-D-valine-acyclovir (LDACV) and D-valine-L-valine acyclovir (DLACV) prodrugs were delineated. These compounds were administered intravenously as a bolus via jugular vein cannula and orally by gavage. Samples were purified by protein precipitation method and analyzed by LC-MS/MS. Pertinent pharmacokinetic parameters were obtained by using WinNonlin. Corneal uptake studies of LDACV and LACV were studied following oral administration. Results Following i.v. administration, the area under the curve (AUC) in μM*min of generated ACV was in the order of LACV > LDACV > DLACV indicating their rate of metabolism. The AUC values of total drug obtained in the systemic circulation after oral administration LACV and LDACV were 1077.93 ± 236.09 and 1141.76 ± 73.67 μM*min, respectively. DLACV exhibited poor oral absorption. Cmax (μM) and AUC of the intact prodrug obtained in the systemic circulation following oral administration of LDACV were almost 4–5 times higher than LACV. Moreover, concentrations achieved in the cornea after oral administration of LDACV were almost two times of LACV. Conclusions LDACV increased both the oral bioavailability and subsequent in vivo corneal uptake of ACV Hence, LDACV can be considered as the most promising drug candidate for delivery of ACV, in treatment of both genital herpes and ocular herpes keratitis after oral administration.


Author(s):  
Revathi Naga Lakshmi Ponnuri ◽  
Prahlad Pragallapati ◽  
Ravindra N ◽  
Venkata Basaveswara Rao Mandava

  Objective: The main objective of the work was to develop a straightforward, fast and selective liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay for determination of pioglitazone (PG), keto pioglitazone (KPG), and hydroxy pioglitazone (HPG) in human plasma and to validate as per recent guidelines.Methods: Analyte and the internal standard (IS) were extracted from plasma through liquid-liquid extraction and chromatographed on a Xterra RP18, 100×4.6, 5 μ column using methanol: acetonitrile mixture and 10 mM Ammonium formate buffer (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. The API-3200 Q Trap LC-MS/MS instrument in multiple reaction monitoring mode was used for detection. Diphenhydramine was utilized as IS.Results: The linearity was established in the concentration range of 20.15-1007.58 ng/mL for PG, 20.35-1017.58 ng/mL for KPG, and 19.68-491.22 ng/mL for HPG in human plasma. All the validation parameters were well within the acceptance limits.Conclusion: A new simple LC-MS/MS method was developed for the determination of PG, KPG, and HPG in human plasma. This method can be easily applied for the estimation of pharmacokinetic parameters of PG, KPG, and HPG.


2019 ◽  
Vol 26 (1) ◽  
pp. 63-77
Author(s):  
Shencong Lv ◽  
Henghui Wang ◽  
Yong Yan ◽  
Miaohua Ge ◽  
Jian Guan

A simple, rapid, and efficient liquid chromatography tandem mass spectrometry (LC–MS/MS) method, operated in electrospray ionization and quadrupole linear ion trap modes, has been developed for the identification and structural characterization of aflatoxins in peanuts and its derivative products or bean sauce. Samples (5 g) were extracted with acetonitrile/water/formic acid (79:20:1, v/v). After centrifugation and dilution, the extracts were separated on a C18 analytical column by gradient elution (acetonitrile/0.2% formic acid) and analyzed by UPLC–MS/MS. External calibration was used for qualification. The developed multiple reaction monitoring–information-dependent acquisition–enhanced product ion method enabled quantification and confirmation of the analytes in a single run. Enhanced product ion mode was used for qualitative analysis, while multiple reaction monitoring mode was used for quantitative analysis. An in-house library was constructed for identification. Calibration curves showed good linearity with correlation coefficients (r) higher than 0.994. Limits of detection were determined to be below 0.26 µg kg−1 for most analytes. The recoveries for those substances were in the acceptable range of 80.2%–119.1%. A new LC–MS3 method was established for further confirmation. One pickled pepper peanut was found to contain aflatoxins B1, B2, and G1 with contents of 90.93, 26.64, and 1.92 µg kg−1, respectively.


Sign in / Sign up

Export Citation Format

Share Document