Preparation and characterization of Black titanium by chemical reduction of TiO2 and its photocatalytic activity

2021 ◽  
Vol 17 ◽  
Author(s):  
Meriem Kouhail ◽  
Zakia El ahmadi ◽  
Abbés Benayada ◽  
Said Gmouh

Background: Monitoring of the chemical synthesis of black titanium. Objective: In this study, we prepared a black titanium nanomaterial by chemical reduction (NaBH4 treatment). Control of the black TiO2 nanomaterial synthesis followed by a thermal analysis from 100°C to 400°C under azote atmosphere is presented. We used a commercial dye, Reactive Bezactiv Yellow (RBY) degradation, to examine the photocatalytic activity of the black titanium. Method: The thermal analysis of WT and a mixture of treated TiO4 (WT+NaBH2) was examined by thermogravimetric analysis (TGA). Results: A deformation of the crystalline lattice is extended beyond the entire visible spectrum. The thermal property reveals that the black titanium is more stable than the white titanium, and BT indicated a more photocatalytic performance than WT. Conclusion: We have successfully synthesized black titanium via chemical reduction employing a synthesis of white titanium. The thermal analysis reveals that BT has a high resistance than WT that offers a promising opportunity for several photocatalytic applications.

2017 ◽  
Vol 19 (36) ◽  
pp. 24915-24927 ◽  
Author(s):  
A. H. Reshak

The amalgamation of a wide optical band gap photocatalyst with visible-light-active CdO quantum dots (QDs) as sensitizers is one of the most efficient ways to improve photocatalytic performance under visible light irradiation.


2020 ◽  
Vol 44 (6) ◽  
pp. 2380-2388 ◽  
Author(s):  
Kura Narsimha ◽  
M. Shekar Babu ◽  
N. Anuradha ◽  
Swarupa Guda ◽  
B. Kranthi Kumar ◽  
...  

The objective of this work is to convert an ultraviolet active photocatalyst to a visible active photocatalyst and investigate the effect of copper (Cu2+) doping on the morphology and photocatalytic activity of CdWO4.


RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 16277-16283 ◽  
Author(s):  
Yongqian Wang ◽  
Tingting Jiang ◽  
Dawei Meng ◽  
Junhan Kong ◽  
Hanxiang Jia ◽  
...  

Self-assembled nanostructured copper compound whose absorption edge covers the entire visible spectrum was explored amply and processes excellent photocatalytic activity.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24665-24672 ◽  
Author(s):  
Chencheng Zhang ◽  
Pingfang Han ◽  
Xiaoping Lu ◽  
Qinghui Mao ◽  
Jiangang Qu ◽  
...  

Herein, we describe the hydrothermal immobilization of BiVO4 on activated carbon fibers, using Reactive Black KN-B photocatalytic performance evaluation and establishing the experimental conditions yielding maximalphotocatalytic activity.


2012 ◽  
Vol 602-604 ◽  
pp. 917-920 ◽  
Author(s):  
Zhen Hui Xiao ◽  
Shui Sheng Wu ◽  
Yan Lin Sun ◽  
Yu Lin Zhao ◽  
Ya Ming Wang

Graphene was synthesized by microwave-hydrothermal chemical reduction of graphite oxide using hydrazine hydrate as the reducing agent. Graphene was characterized using X-ray diffraction, UV-visible spectrum, FT-IR spectrum and scanning electron microscopy. Results indicated that the as-prepared graphene was wrinkled and comprised fewer graphenes with a highly crystalline structure.


2011 ◽  
Vol 299-300 ◽  
pp. 722-726
Author(s):  
Wen Chang Zhuang ◽  
Yu Xiao Wang

Composites have achieved much attention because of their excellent qualities. Core-shell γ-Fe2O3/Au nanoparticles were prepared by chemical reduction. Their optical properties and morphology were characterized by UV-visible spectrum (UV-vis), X-ray diffraction (XRD) and Transmission Electronic Microscopy (TEM). Furthermore, the average particle size and interface structure were also analyzed using small angle X-ray scattering (SAXS).


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 142 ◽  
Author(s):  
Yanling Chen ◽  
Xue Bai

In the 21st century, the development of sustainable energy and advanced technologies to cope with energy shortages and environmental pollution has become vital. Semiconductor photocatalysis is a promising technology that can directly convert solar energy to chemical energy and is extensively used for its environmentally-friendly properties. In the field of photocatalysis, graphitic carbon nitride (g-C3N4) has obtained increasing interest due to its unique physicochemical properties. Therefore, numerous researchers have attempted to integrate quantum dots (QDs) with g-C3N4 to optimize the photocatalytic activity. In this review, recent progress in combining g-C3N4 with QDs for synthesizing new photocatalysts was introduced. The methods of QDs/g-C3N4-based photocatalysts synthesis are summarized. Recent studies assessing the application of photocatalytic performance and mechanism of modification of g-C3N4 with carbon quantum dots (CQDs), graphene quantum dots (GQDs), and g-C3N4 QDs are herein discussed. Lastly, challenges and future perspectives of QDs modified g-C3N4-based photocatalysts in photocatalytic applications are discussed. We hope that this review will provide a valuable overview and insight for the promotion of applications of QDs modified g-C3N4 based-photocatalysts.


2007 ◽  
Vol 544-545 ◽  
pp. 103-106 ◽  
Author(s):  
Leticia M. Torres-Martínez ◽  
Lorena L. Garza-Tovar ◽  
M. Elena Meza-de la Rosa ◽  
A. Martínez-de la Cruz ◽  
Arquímedes Cruz-López

The catalytic photodegradation of Rhodamine B with UV irradiation over NaMO3 (M= Ta and Nb) doped with Y2O3, La2O3, Nd2O3 and Sm2O3 has been studied in our laboratories. All catalysts were characterized by different techniques such as X-ray powder diffraction (XRD) and thermal analysis (DTA/TGA). Surface characterization of the solids was carried out from adsorption isotherms and infrared spectroscopy (FTIR). The band gap energy (Eg) of materials ranged from 4.1 to 2.9 eV. For comparative purpose the materials studied as catalysts were also synthesized by classical solid state reaction.


2012 ◽  
Vol 626 ◽  
pp. 131-137 ◽  
Author(s):  
Adel Fisli ◽  
Rahmi Saridewi ◽  
Sari Hasnah Dewi ◽  
Jarnuzi Gunlazuardi

Fe3O4/TiO2composites were prepared by heteroagglomeration. The composites of different Fe3O4to TiO2weight ratio were prepared by mixing of prepared Fe3O4with TiO2in aqueous slurry, under ultrasonic treatment. All prepared samples were characterized by XRD, VSM, SEM/EDS, raman spectroscopy and BET. The prepared composites contained TiO2(anatase and rutile) and Fe3O4crystal phases. The magnetization hysteresis loop for Fe3O4/TiO2nanocomposites indicated that the hybrid catalyst showed superparamagnetic characteristics at room temperature. Photocatalytic performance of the prepared composites was examined by its ability to degrade methylene blue dye in aqueous solution. The photocatalytic activity of Fe3O4/TiO2composites was lower than that of pure TiO2sample because of the presence of non-active photocatalytic in composite (iron oxide). Under UV irradiation, the photocatalytic activity of Fe3O4/TiO2(1:1) composite was relatively similar to Fe3O4/TiO2(1:2), however, under sunlight irradiation, the photocatalytic activity of Fe3O4/TiO2(1:2) composite was relatively increase. The Fe3O4/TiO2composite can be easily recovered from treated water in slurry-type reactor by the application of an external magnetic field.


2019 ◽  
Vol 8 (1) ◽  
pp. 56-61
Author(s):  
Aneeya K. Samantara ◽  
Debasrita Dash ◽  
Dipti L. Bhuyan ◽  
Namita Dalai ◽  
Bijayalaxmi Jena

: In this article, we explored the possibility of controlling the reactivity of ZnO nanostructures by modifying its surface with gold nanoparticles (Au NPs). By varying the concentration of Au with different wt% (x = 0.01, 0.05, 0.08, 1 and 2), we have synthesized a series of (ZnO/Aux) nanocomposites (NCs). A thorough investigation of the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface has been carried out. It was observed that ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity among all concentrations of Au on the ZnO surface, which degrades the dye concentration within 2 minutes of visible light exposure. It was further revealed that with an increase in the size of plasmonic nanoparticles beyond 0.08%, the accessible surface area of the Au nanoparticle decreases. The photon absorption capacity of Au nanoparticle decreases beyond 0.08% resulting in a decrease in electron transfer rate from Au to ZnO and a decrease of photocatalytic activity. Background: Due to the industrialization process, most of the toxic materials go into the water bodies, affecting the water and our ecological system. The conventional techniques to remove dyes are expensive and inefficient. Recently, heterogeneous semiconductor materials like TiO2 and ZnO have been regarded as potential candidates for the removal of dye from the water system. Objective: To investigate the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface and the effect of the size of Au NPs for photocatalytic performance in the degradation process. Methods: A facile microwave method has been adopted for the synthesis of ZnO nanostructure followed by a reduction of gold salt in the presence of ZnO nanostructure to form the composite. Results: ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity which degrades the dye concentration within 2 minutes of visible light exposure. The schematic mechanism of electron transfer rate was discussed. Conclusion: Raspberry shaped ZnO nanoparticles modified with different percentages of Au NPs showed good photocatalytic behavior in the degradation of dye molecules. The synergetic effect of unique morphology of ZnO and well anchored Au nanostructures plays a crucial role.


Sign in / Sign up

Export Citation Format

Share Document