Design, Synthesis and Biological Evaluation of a Novel Series of Thiadiazole-Based Anticancer Agents as Potent Angiogenesis Inhibitors

Author(s):  
Burcugül Altuğ-Tasa ◽  
Betül Kaya-Çavuşoğlu ◽  
Ayşe T. Koparal ◽  
Gülhan Turan ◽  
Ali S. Koparal ◽  
...  

Background: Thiadiazole has attracted a great deal of interest as a versatile heterocycle for the discovery and development of potent anticancer agents. Thiadiazole derivatives exert potent antitumor activity against a variety of human cancer cell lines through various mechanisms. Objective: The goal of this work was to design and synthesize thiadiazole-based anticancer agents with anti-angiogenic activity. Methods: N-aryl-2-[(5-(aryl)amino-1,3,4-thiadiazol-2-yl)thio]acetamides (4a-r) were synthesized via the reaction of 5-(aryl)amino-1,3,4- thiadiazole-2(3H)-thiones with N-(aryl)-2-chloroacetamides in the presence of potassium carbonate. The compounds were investigated for their cytotoxic effects on three cancer (A549, HepG2, SH-SY5Y), two normal (HUVEC and 3T3-L1) cell lines using MTT and WST1 assays. In order to examine whether the compounds have anti-angiogenic effects or not, HUVEC were cultured on matrigel matrix to create a vascular-like tube formation. Results: Compounds 4d, 4m and 4n were more effective on A549 human lung adenocarcinoma cells than cisplatin. The IC50 values of compounds 4d, 4m and 4n for A549 cell line were found to be 7.82±0.4, 12.5±0.22, 10.1±0.52 µM, respectively when compared with cisplatin (IC50= 20±0.51 µM), whilst their IC50 values for HUVEC cell line were determined as 138.7±0.84, 78±0.44, 177.6±0.2 µM, respectively after 48 h treatment. The concentrations (10-20-50 µM) of compounds 4d, 4e, 4l, 4m, 4n, 4q and 4r were found to inhibit vascular like tube formation. Conclusion: According to their anticancer and anti-angiogenic effects, compounds 4d, 4m and 4n may be potential anticancer agents for further in vivo studies.

2021 ◽  
Vol 22 (22) ◽  
pp. 12272
Author(s):  
Rania Hamdy ◽  
Arwyn T. Jones ◽  
Mohamed El-Sadek ◽  
Alshaimaa M. Hamoda ◽  
Sarra B. Shakartalla ◽  
...  

A series of 3-(6-substituted phenyl-[1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazol-3-yl)-1H-indoles (5a–l) were designed, synthesized and evaluated for anti-apoptotic Bcl-2-inhibitory activity. Synthesis of the target compounds was readily accomplished through a reaction of acyl hydrazide (1) with carbon disulfide in the presence of alcoholic potassium hydroxide to afford the corresponding intermediate potassium thiocarbamate salt (2), which underwent cyclization reaction in the presence of excess hydrazine hydrate to the corresponding triazole thiol (3). Further cyclisation reaction with substituted benzoyl chloride derivatives in the presence of phosphorous oxychloride afforded the final 6-phenyl-indol-3-yl [1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazole compounds (5a–l). The novel series showed selective sub-micromolar IC50 growth-inhibitory activity against Bcl-2-expressing human cancer cell lines. The most potent 6-(2,4-dimethoxyphenyl) substituted analogue (5k) showed selective IC50 values of 0.31–0.7 µM against Bcl-2-expressing cell lines without inhibiting the Bcl-2-negative cell line (Jurkat). ELISA binding affinity assay (interruption of Bcl-2-Bim interaction) showed potent binding affinity for (5k) with an IC50 value of 0.32 µM. Moreover, it fulfils drug likeness criteria as a promising drug candidate.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2950 ◽  
Author(s):  
Chen ◽  
Guo ◽  
Ma ◽  
Chen ◽  
Fan ◽  
...  

Utilizing a pharmacophore hybridization approach, we have designed and synthesized a novel series of 28 new heterobivalent β-carbolines. The in vitro cytotoxic potential of each compound was evaluated against the five cancer cell lines (LLC, BGC-823, CT-26, Bel-7402, and MCF-7) of different origin—murine and human, with the aim of determining the potency and selectivity of the compounds. Compound 8z showed antitumor activities with half-maximal inhibitory concentration (IC50) values of 9.9 ± 0.9, 8.6 ± 1.4, 6.2 ± 2.5, 9.9 ± 0.5, and 5.7 ± 1.2 µM against the tested five cancer cell lines. Moreover, the effect of compound 8z on the angiogenesis process was investigated using a chicken chorioallantoic membrane (CAM) in vivo model. At a concentration of 5 μM, compound 8z showed a positive effect on angiogenesis. The results of this study contribute to the further elucidation of the biological regulatory role of heterobivalent β-carbolines and provide helpful information on the development of vascular targeting antitumor drugs.


2017 ◽  
Vol 16 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Adimule Vinayak ◽  
Medapa Sudha ◽  
Kumar S Lalita

A linear strategy was adopted in synthesizing the novel amine derivatives 7(a-h) of 5-[5- (chloromethyl)-1, 3, 4-oxadiazol-2-yl]-2-(4-fluorophenyl)-pyridine (6) and screened these compounds for in vitro anticancer activity against three human cancer cell lines (HeLa,Caco-2 and HepG2). The synthesised novel compounds were characterized by 1H NMR, MS and 13C NMR spectroscopic evidences. Microwave irradiation of compound (5) in presence of chloroacetyl chloride and phosphoryl oxychloride yielded the dehydrated cyclized key intermediate 5-[5-(chloromethyl)-1,3,4-oxadiazol-2-yl]-2-(4-fluorophenyl)-pyridine which upon treatment with various primary or secondary amines (a-h) resulted into the corresponding amine derivatives. The IC50 values of the final compounds were compared with that of 5-fluorouracil (5-FU) taken as the standard. Compounds 7a and 7d were found to be highly cytotoxic against HepG2 cell lines with IC50 values of 2.6 ?M (IC50 = 34.0 ± 0.5 ?M) and 5.8 ?M (IC50 = 112 ± 1.4 ?M) respectively. The compound (7f) alone was found to have high cytotoxicity against Caco-2 cell lines with IC50 value of 2.3 ?M (IC50 = 87 ± 2.6 ?M).Dhaka Univ. J. Pharm. Sci. 16(1): 11-19, 2017 (June)


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
S. R. Aravind ◽  
Manu M. Joseph ◽  
Sheeja Varghese ◽  
Prabha Balaram ◽  
T. T. Sreelekha

Antitumor activity of polysaccharide PST001 isolated from the seed kernel ofTamarindus indicawas evaluated using different cancer cell lines. Human cancer cell lines A549, KB, and MCF-7 and murine cancer cell lines DLA and EAC were treated with PST001 and cell growth inhibition was assessed by MTT assay. In vivo studies were carried out for toxicity, tumor reduction and immunomodulation. The respective IC50of PST001 in A549, KB, and DLA was at 80.72, 190.99, and 91.14 μg/mL. Significant tumor reduction was obtained in both DLA and EAC tumors on treatment with PST001 which was more prominent when PST001 was administered with CTX/5-fluorouracil. Increase in total WBC, CD4+T-cell population, and bone marrow cellularity suggested strong immunomodulatory activity for this compound. No significant abnormality was observed in toxicity studies. Thus the results of the present study suggest that PST001 has immunomodulatory and tumor inhibitory activities and has the potential to be developed as an anticancer agent and immunomodulator either as a sole agent or as an adjuvant to other chemotherapeutic drugs.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 410 ◽  
Author(s):  
Djenisa Rocha ◽  
Ana Seca ◽  
Diana Pinto

Isolation, finding or discovery of novel anticancer agents is very important for cancer treatment, and seaweeds are one of the largest producers of chemically active metabolites with valuable cytotoxic properties, and therefore can be used as new chemotherapeutic agents or source of inspiration to develop new ones. Identification of the more potent and selective anticancer components isolated from brown, green and red seaweeds, as well as studies of their mode of action is very attractive and constitute a small but relevant progress for pharmacological applications. Several researchers have carried out in vitro and in vivo studies in various cell lines and have disclosed the active metabolites among the terpenoids, including carotenoids, polyphenols and alkaloids that can be found in seaweeds. In this review the type of metabolites and their cytotoxic or antiproliferative effects will be discussed additionally their mode of action, structure-activity relationship and selectivity will also be revealed. The diterpene dictyolactone, the sterol cholest-5-en-3β,7α-diol and the halogenated monoterpene halomon are among the reported compounds, the ones that present sub-micromolar cytotoxicity. Additionally, one dimeric sesquiterpene of the cyclolaurane-type, three bromophenols and one halogenated monoterpene should be emphasized because they exhibit half maximal inhibitory concentration (IC50) values between 1–5 µM against several cell lines.


2020 ◽  
Vol 21 (23) ◽  
pp. 8980
Author(s):  
Rania Hamdy ◽  
Samia A. Elseginy ◽  
Noha I. Ziedan ◽  
Mohamed El-Sadek ◽  
Elsaid Lashin ◽  
...  

A series of 2-(1H-indol-3-yl)-5-substituted-1,3,4-oxadiazoles, 4a–m, were designed, synthesized and tested in vitro as potential pro-apoptotic Bcl-2 inhibitory anticancer agents based on our previously reported hit compounds. Synthesis of the target 1,3,4-oxadiazoles was readily accomplished through a cyclization reaction of indole carboxylic acid hydrazide 2 with substituted carboxylic acid derivatives 3a–m in the presence of phosphorus oxychloride. New compounds 4a–m showed a range of IC50 values concentrated in the low micromolar range selectively in Bcl-2 positive human cancer cell lines. The most potent candidate 4-trifluoromethyl substituted analogue 4j showed selective IC50 values of 0.52–0.88 μM against Bcl-2 expressing cell lines with no inhibitory effects in the Bcl-2 negative cell line. Moreover, 4j showed binding that was two-fold more potent than the positive control gossypol in the Bcl-2 ELISA binding affinity assay. Molecular modeling studies helped to further rationalize anti-apoptotic Bcl-2 binding and identified compound 4j as a candidate with drug-like properties for further investigation as a selective Bcl-2 inhibitory anticancer agent.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5924
Author(s):  
Łukasz Balewski ◽  
Franciszek Sączewski ◽  
Patrick J. Bednarski ◽  
Lisa Wolff ◽  
Anna Nadworska ◽  
...  

The appropriate 1-arylhydrazinecarbonitriles 1a–c are subjected to the reaction with 2-chloro-4,5-dihydro-1H-imidazole (2), yielding 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imines 3a–c, which are subsequently converted into the corresponding amides 4a–e, 8a–c, sulfonamides 5a–n, 9, ureas 6a–I, and thioureas 7a–d. The structures of the newly prepared derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 are confirmed by IR, NMR spectroscopic data, as well as single-crystal X-ray analyses of 5e and 8c. The in vitro cytotoxic potency of these compounds is determined on a panel of human cancer cell lines, and the relationships between structure and antitumor activity are discussed. The most active 4-chloro-N-(2-(4-chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)benzamide (4e) and N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-[1,1′-biphenyl]-4-sulfonamide (5l) inhibits the growth of the cervical cancer SISO and bladder cancer RT-112 cell lines with IC50 values in the range of 2.38–3.77 μM. Moreover, N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-phenoxybenzenesulfonamide (5m) has the best selectivity towards the SISO cell line and induces apoptosis in this cell line.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1150
Author(s):  
Nana Meng ◽  
Shuyan Zhou ◽  
Min Hu ◽  
Youzhi Xu ◽  
Yong Xia ◽  
...  

A novel series of 4-(4-formamidophenylamino)-N-methylpicolinamide derivatives were synthesized and evaluated against different tumor cell lines. Experiments in vitro showed that these derivatives could inhibit the proliferation of two kinds of human cancer cell lines (HepG2, HCT116) at low micromolar concentrations and the most potent analog 5q possessed broad-spectrum antiproliferative activity. Experiments in vivo demonstrated that 5q could effectively prolong the longevity of colon carcinoma-burdened mice and slow down the progression of cancer cells by suppression of angiogenesis and the induction of apoptosis and necrosis.


2020 ◽  
Vol 17 (5) ◽  
pp. 345-351
Author(s):  
Syndla Premalatha ◽  
G. Rambabu ◽  
Islavathu Hatti ◽  
Dittakavi Ramachandran

A new series of 3-(3,4,5-trimethoxyphenyl)-5-(2-(5-arylbenzo[b]thiophen-3-yl)oxa zol-5- yl)isoxazole derivatives were designed and synthesized. All these derivatives were evaluated for their anticancer activity against various human cancer cell lines such as MCF-7 (breast cancer), A549 (lung cancer), DU-145 (prostate cancer) and MDA MB-231 (breast cancer)-four human cancer cell lines by using MTT assay. Here, etoposide was used as a standard reference drug and most of the compounds were exhibited good anticancer activity with respect to cell lines. Among all compounds, five compounds 11b, 11c, 11f, 11i and 11j showed more potent activity than standard drug, in which, compound 11f was the most promising compound.


2021 ◽  
Vol 22 (14) ◽  
pp. 7631
Author(s):  
Lisa Wolff ◽  
Siva Sankar Murthy Bandaru ◽  
Elias Eger ◽  
Hoai-Nhi Lam ◽  
Martin Napierkowski ◽  
...  

Pentathiepins are polysulfur-containing compounds that exert antiproliferative and cytotoxic activity in cancer cells, induce oxidative stress and apoptosis, and inhibit glutathione peroxidase (GPx1). This renders them promising candidates for anticancer drug development. However, the biological effects and how they intertwine have not yet been systematically assessed in diverse cancer cell lines. In this study, six novel pentathiepins were synthesized to suit particular requirements such as fluorescent properties or improved water solubility. Structural elucidation by X-ray crystallography was successful for three derivatives. All six underwent extensive biological evaluation in 14 human cancer cell lines. These studies included investigating the inhibition of GPx1 and cell proliferation, cytotoxicity, and the induction of ROS and DNA strand breaks. Furthermore, selected hallmarks of apoptosis and the impact on cell cycle progression were studied. All six pentathiepins exerted high cytotoxic and antiproliferative activity, while five also strongly inhibited GPx1. There is a clear connection between the potential to provoke oxidative stress and damage to DNA in the form of single- and double-strand breaks. Additionally, these studies support apoptosis but not ferroptosis as the mechanism of cell death in some of the cell lines. As the various pentathiepins give rise to different biological responses, modulation of the biological effects depends on the distinct chemical structures fused to the sulfur ring. This may allow for an optimization of the anticancer activity of pentathiepins in the future.


Sign in / Sign up

Export Citation Format

Share Document