Construction and Validation of Prognostic Markers of Liver Cancer Based on Autophagy Genes

Author(s):  
Dawei Zhou ◽  
Junchen Wan ◽  
Jiang Luo ◽  
Yuhao Tao

Background: Liver cancer is one of the most common diseases in the world. At present, the mechanism of autophagy genes in liver cancer is not very clear. Therefore, it is meaningful to study the role and prognostic value of autophagy genes in liver cancer. Objective: The purpose of this study is to conduct a bioinformatics analysis of autophagy genes related to primary liver cancer to establish a prognostic model of primary liver cancer based on autophagy genes. Results: Through difference analysis, 31 differential autophagy genes were screened out and then analyzed by GO and KEGG analysis. At the same time, we built a PPI network. To optimize the evaluation of the prognosis of liver cancer patients, we integrated multiple autophagy genes to establish a prognostic model. By using univariate cox regression analysis, 15 autophagy genes related to prognosis were screened out. Then we included these 15 genes into the Least Absolute Shrinkage and Selection Operator (LASSO), and performed multi-factor cox regression analysis on the 9 selected genes to construct a prognostic model. The risk score of each patient was calculated based on 4 genes(BIRC5, HSP8, SQSTM1, and TMEM74) which participated in the establishing of the model, then the patients were divided into high-risk groups and low-risk groups. In the multivariate cox regression analysis, the risk score was the independent prognostic factors (HR=1.872, 95%CI=1.544-2.196, P<0.001). Survival analysis showed that the survival time of the low-risk group was significantly longer than that of the high-risk group. Combining clinical characteristics and autophagy genes, we constructed a nomogram for predicting prognosis. The external dataset GSE14520 proved that the nomogram has a good prediction for individual patients with primary liver cancer. Conclusion: This study provided potential autophagy-related markers for liver cancer patients to predict their prognosis and revealed part of the molecular mechanism of liver cancer autophagy. At the same time, the certain gene pathways and protein pathways related to autophagy may provide some inspiration for the development of anticancer drugs.

2021 ◽  
Vol 8 ◽  
Author(s):  
Ji Yin ◽  
Xiaohui Li ◽  
Caifeng Lv ◽  
Xian He ◽  
Xiaoqin Luo ◽  
...  

Background: Long non-coding RNA (lncRNA) plays a significant role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). This article aims to develop an immune-related lncRNA (irlncRNA) model, regardless of expression levels, for risk assessment and prognosis prediction in HNSCC patients.Methods: We obtained clinical data and corresponding full transcriptome expression of HNSCC patients from TCGA, downloaded GTF files to distinguish lncRNAs from Ensembl, discerned irlncRNAs based on co-expression analysis, distinguished differentially expressed irlncRNAs (DEirlncRNAs), and paired these DEirlncRNAs. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multivariate Cox regression analysis were then performed to screen lncRNA pairs, calculate the risk coefficient, and establish a prognosis model. Finally, the predictive power of this model was validated through the AUC and the ROC curves, and the AIC values of each point on the five-year ROC curve were calculated to select the maximum inflection point, which was applied as a cut-off point to divide patients into low- or high-risk groups. Based on this methodology, we were able to more effectively differentiate between these groups in terms of survival, clinico-pathological characteristics, tumor immune infiltrating status, chemotherapeutics sensitivity, and immunosuppressive molecules.Results: A 13-irlncRNA-pair signature was built, and the ROC analysis demonstrated high sensitivity and specificity of this signature for survival prediction. The Kaplan–Meier analysis indicated that the high-risk group had a significantly shorter survival rate than the low-risk group, and the chi-squared test certified that the signature was highly related to survival status, clinical stage, T stage, and N stage. Additionally, the signature was further proven to be an independent prognostic risk factor via the Cox regression analyses, and immune infiltrating analyses showed that the high-risk group had significant negative relationships with various immune infiltrations. Finally, the chemotherapeutics sensitivity and the expression level of molecular markers were also significantly different between high- and low-risk groups.Conclusion: The signature established by paring irlncRNAs, with regard to specific expression levels, can be utilized for survival prediction and to guide clinical therapy in HNSCC.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. Methods Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. Results Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. Conclusion The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. This study aims to investigate the potential correlation between ferroptosis and the prognosis of lung adenocarcinoma (LUAD). Methods RNA-seq data were collected from the LUAD dataset of The Cancer Genome Atlas (TCGA) database. Based on ferroptosis-related genes, differentially expressed genes (DEGs) between LUAD and paracancerous specimens were identified. The univariate Cox regression analysis was performed to screen key genes associated with the prognosis of LUAD. LUAD patients were divided into the training set and validation set. Then, we screened out key genes and built a prognostic prediction model involving 5 genes using the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation and the multivariate Cox regression analysis. After dividing LUAD patients based on the median level of risk score as cut-off value, the generated prognostic prediction model was validated in the validation set. Moreover, we analyzed the somatic mutations, and estimated the scores of immune infiltration in the high-risk and low-risk groups. Functional enrichment analysis of DEGs was performed as well. Results High-risk scores indicated the worse prognosis of LUAD. The maximum area under curve (AUC) of the training set and the validation set in this study was 0.7 and 0.69, respectively. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of LUAD cases with the survival time of 1, 3 and 5 years was 0.698, 0.71 and 0.73, respectively. In addition, the mutation frequency of LUAD patients in the high-risk group was significantly higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results. Conclusions This study constructs a novel LUAD prognosis prediction model involving 5 ferroptosis-related genes, which can be used as a promising tool for decision-making of clinical therapeutic strategies of LUAD.


Author(s):  
Peng Gu ◽  
Lei Zhang ◽  
Ruitao Wang ◽  
Wentao Ding ◽  
Wei Wang ◽  
...  

Background: Female breast cancer is currently the most frequently diagnosed cancer in the world. This study aimed to develop and validate a novel hypoxia-related long noncoding RNA (HRL) prognostic model for predicting the overall survival (OS) of patients with breast cancer.Methods: The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 200 hypoxia-related mRNAs were obtained from the Molecular Signatures Database. The co-expression analysis between differentially expressed hypoxia-related mRNAs and lncRNAs based on Spearman’s rank correlation was performed to screen out 166 HRLs. Based on univariate Cox regression and least absolute shrinkage and selection operator Cox regression analysis in the training set, we filtered out 12 optimal prognostic hypoxia-related lncRNAs (PHRLs) to develop a prognostic model. Kaplan–Meier survival analysis, receiver operating characteristic curves, area under the curve, and univariate and multivariate Cox regression analyses were used to test the predictive ability of the risk model in the training, testing, and total sets.Results: A 12-HRL prognostic model was developed to predict the survival outcome of patients with breast cancer. Patients in the high-risk group had significantly shorter median OS, DFS (disease-free survival), and predicted lower chemosensitivity (paclitaxel, docetaxel) compared with those in the low-risk group. Also, the risk score based on the expression of the 12 HRLs acted as an independent prognostic factor. The immune cell infiltration analysis revealed that the immune scores of patients in the high-risk group were lower than those of the patients in the low-risk group. RT-qPCR assays were conducted to verify the expression of the 12 PHRLs in breast cancer tissues and cell lines.Conclusion: Our study uncovered dozens of potential prognostic biomarkers and therapeutic targets related to the hypoxia signaling pathway in breast cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kebing Huang ◽  
Xiaoyu Yue ◽  
Yinfei Zheng ◽  
Zhengwei Zhang ◽  
Meng Cheng ◽  
...  

Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (lncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related lncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related lncRNAs. Glioma patients in TCGA were divided into high-risk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate lncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related lncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.


2021 ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. The aim of this study is to investigate the relationship between ferroptosis and the prognosis of lung adenocarcinoma (LUAD).Methods. RNA-seq data was collected from the LUAD dataset of The Cancer Genome Altas (TCGA) database. We used ferroptosis-related genes as the basis, and identify the differential expression genes (DEGs) between cancer and paracancer. The univariate Cox regression analysis were used to screen the prognostic-related genes. We divided the patients into training and validation sets. Then, we screened out key genes and built a 5 genes prognostic prediction model by the applications of the least absolute shrinkage and selection operator (LASSO) 10-fold cross-validation and the multi-variate Cox regression analysis. We divided the cases by the median value of risk score and validated this model in the validation set. Meanwhile, we analyzed the somatic mutations, and estimated the score of immune infiltration in the high- and low-risk groups, as well as performed functional enrichment analysis of DEGs.Results. The result revealed that the high-risk score triggered the worse prognosis. The maximum area under curve (AUC) of the training set and the validation set of in this study was 0.7 and 0.69. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of cases with survival time of 1, 3 and 5 years are 0.698, 0.71 and 0.73. In addition, the mutation frequency of patients in the high-risk group was higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results.Conclusion. This study constructed a novel LUAD prognosis prediction model base on 5 ferroptosis-related genes, which can provide a prognostic evaluation tool for the clinical therapeutic decision.


2021 ◽  
Author(s):  
BO SONG ◽  
Lijun Tian ◽  
Fan Zhang ◽  
Zheyu Lin ◽  
Boshen Gong ◽  
...  

Abstract Background: Thyroid cancer (TC) is the most common endocrine malignancy worldwide. The incidence of TC is high and increasing worldwide due to continuous improvements in diagnostic technology. TC is still often overtreated due to a lack of reliable diagnostic biomarkers. Therefore, determining accurate prognostic predictions to stratify TC patients is important.Methods: Raw data were downloaded from the TCGA database, and pairwise comparisons were applied to identify differentially expressed immune-related lncRNA (DEirlncRNA) pairs. Then, we used univariate Cox regression analysis and a modified Lasso algorithm on these pairs to construct a risk assessment model for TC. Next, TC patients were assigned to high- and low-risk groups based on the optimal cutoff score of the model for the 1-year ROC curve. We evaluated the signature in terms of prognostic independence, predictive value, immune cell infiltration, ICI-related molecules and small-molecule inhibitor efficacy. Results: We identified 30 DEirlncRNA pairs through Lasso regression, and 14 pairs served as the novel predictive signature. The high-risk group had a significantly poorer prognosis than the low-risk group. Cox regression analysis revealed that this immune-related signature can predict prognosis independently and reliably for TC. With the CIBERSORT algorithm, we found an association between the signature and immune cell infiltration. Additionally, several immune checkpoint inhibitor (ICI)-related molecules, such as PD-1 and PD-L1, showed a negative correlation with the high-risk group. We further found that some commonly used small-molecule inhibitors, such as sunitinib, were related to this new signature. Conclusions: We constructed a prognostic immune-related lncRNA signature that can predict TC patient survival without considering the technical bias of different platforms, and this signature also sheds light on TC overall prognosis and novel clinical treatments, such as ICB therapy and small molecular inhibitors.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 850-859
Author(s):  
Bing Wang ◽  
Yang Zhang

AbstractBackgroundAs one of the most common malignant tumors worldwide, the morbidity and mortality of gastric carcinoma (GC) are gradually increasing. The aim of this study was to construct a signature according to immune-relevant genes to predict the survival outcome of GC patients using The Cancer Genome Altas (TCGA).MethodsUnivariate Cox regression analysis was used to assess the relationship between immune-relevant genes regarding the prognosis of patients with GC. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to select prognostic immune-relevant genes and to establish the signature for the prognostic evaluation of patients with GC. Multivariate Cox regression analysis and Kaplan–Meier survival analysis were used to assess the independent prognostic ability of the immune-relevant gene signature.ResultsA total of 113 prognostic immune-relevant genes were identified using univariate Cox proportional hazards regression analysis. A signature of nine immune-relevant genes was constructed using the LASSO Cox regression. The GC samples were assigned to two groups (low- and high risk) according to the optimal cutoff value of the signature score. Compared with the patients in the high-risk group, patients in the low-risk group had a significantly better prognosis in the TCGA and GSE84437 cohorts (log-rank test P < 0.001). Multivariate Cox regression analysis demonstrated that the signature of nine immune-relevant genes might serve as an independent predictor of GC.ConclusionsOur results showed that the signature of nine immune-relevant genes may potentially serve as a prognostic prediction for patients with GC, which may contribute to the decision-making of personalized treatment for the patients.


Sign in / Sign up

Export Citation Format

Share Document