scholarly journals Optimization of Microemulgel for Tizanidine Hydrochloride

Author(s):  
Swati Jagdale ◽  
Sujata Brahmane ◽  
Anuruddha Chabukswar

Background: Tizanidine hydrochloride acts centrally as a muscle relaxant. It is used for the treatment of painful muscle spasm, spasticity associated with multiple sclerosis or spinal cord injury and treatment of muscle spasticity in spinal cord disease. Tizanidine hydrochloride belongs to BCS class II. It has low oral bioavailability and short halflife. Incorporating this drug in microemulgel is an excellent way to overcome problems associated with the drug. Objective: Present research work was aimed to develop and optimize a microemulsion based gel system for tizanidine hydrochloride. Methods: Screening of oil, surfactant and co-surfactant was carried out. Ternary phase diagram was constructed to obtain concentration range of components. The prepared microemulsion was evaluated for pH, globule size, zeta potential, conductivity, density and viscosity. 32 level factorial design was applied to study the effect of concentration of carbopol 934 and HPMC K15M on % cumulative drug release and viscosity of microemulgel using software Design Expert. Microemulgel was evaluated for pH, spreadability, viscosity, syneresis, drug content, bioadhesive strength, in-vitro as well as ex-vivo diffusion study. Results: Microemulsion was prepared by using isopropyl myristate as oil, tween 80 as a surfactant and transcutol P as cosurfactant. Largest transparent microemulsion region was found with Smix ratio of 1:1. FE-SEM showed globule size 28μm for batch B1 and zeta potential was -1.27mV indicating good stability of the microemulsion. Optimised batch was F6 which showed 92% drug release within 8 hours. It followed the Korsmeyer-Peppas model. Conclusion: A stable, effective and elegant microemulgel formulation, exhibiting good in-vitro and ex-vivo drug release was formulated.

Author(s):  
Anjali Pandya ◽  
Rajani Athawale ◽  
Durga Puro ◽  
Geeta Bhagwat

Background: The research work involves development of PLGA biodegradable microspheres loaded with dexamethasome for intraocular delivery. Objective: To design and evaluate long acting PLGA microspheres for ocular delivery of dexamethasone. Method: Present formulation involves the development of long acting dexamethasone loaded microspheres composed of a biodegradable controlled release polymer, Poly(D, L- lactide-co-glycolide) (PLGA), for the treatment of posterior segment eye disorders intravitreally. PLGA with monomer ratio of 50:50 of lactic acid to glycolic acid was used to achieve a drug release up to 45 days. Quality by Design approach was utilized for designing the experiments. Single emulsion solvent evaporation technique along with high pressure homogenization was used to facilitate formation of microspheres. Results: Particle size evaluation, drug content and drug entrapment efficiency were determined for the microspheres. Particle size and morphology was observed using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) and microspheres were in the size range of 1-5 μm. Assessment of drug release was done using in vitro studies and transretinal permeation was observed by ex vivo studies using goat retinal tissues. Conclusion: Considering the dire need for prolonged therapeutic effect in diseases of the posterior eye, an intravitreal long acting formulation was designed. Use of biodegradable polymer with biocompatible degradation products was a rational approach to achieve this aim. Outcome from present research shows that developed microspheres would provide a long acting drug profile and reduce the frequency of administration thereby improving patient compliance.


2021 ◽  
Vol 62 (3) ◽  
pp. 290-304
Author(s):  
Moreshwar Patil ◽  
Prashant Pandit ◽  
Pavan Udavant ◽  
Sandeep Sonawane ◽  
Deepak Bhambere

Introduction: Etodolac is used in the treatment of acute pain and inflammation. It has low solubility because of high hydrophobicity and it is reported that upon oral administration shows gastric disturbances. This encourages the development of topical vesicular formulation. Method: In this work we used coacervation-phase separation method for the development of etodolac loaded vesicular system by using non-ionic surfactants, cholesterol and soya lecithin. Central composite design (rotatble) was used to optimize the concentrations of soy lecithin, surfactant and cholesterol. The prepared formulations were characterized by number of vesicles formed, vesicle size, zeta potential, entrapment efficiency, in-vitro permeation, ex-vivo permeation and anti-inflammatory study. Results: Etodolac was successfully entrapped in all formulations having efficiency in the range of 74.36% to 90.85%, which was more at 4 °C than room temperature. When hydrated with water; niosome in the range of 54 to 141 (per cubic mm) were spontaneously produced. The results of in-vitro diffusion study revealed that etodolac was released in the range of 71.86 to 97.16% over a period of 24 hrs. The average vesicle size of optimized formulation was found 211.9 nm with PDI of 0.5. The observed responses i.e. % encapsulation efficiency and drug release were 74.12 and 95.08 respectively. The zeta potential was -19.4mV revealed the stability of formulation which was further confirmed by no changes in drug content and drug release after stability studies. The % inhibition in paw volume was 40.52% and 43.61% for test and marketed proniosomal gel. Conclusion: Proniosomal gel formulation was stable and could enhance skin delivery of etodolac because of excellent permeation capability of vesicular system.


2022 ◽  
Vol 15 ◽  
Author(s):  
Zachary T. Olmsted ◽  
Cinzia Stigliano ◽  
Brandon Marzullo ◽  
Jose Cibelli ◽  
Philip J. Horner ◽  
...  

Neural cell interventions in spinal cord injury (SCI) have focused predominantly on transplanted multipotent neural stem/progenitor cells (NSPCs) for animal research and clinical use due to limited information on survival of spinal neurons. However, transplanted NSPC fate is unpredictable and largely governed by injury-derived matrix and cytokine factors that are often gliogenic and inflammatory. Here, using a rat cervical hemicontusion model, we evaluate the survival and integration of hiPSC-derived spinal motor neurons (SMNs) and oligodendrocyte progenitor cells (OPCs). SMNs and OPCs were differentiated in vitro through a neuromesodermal progenitor stage to mimic the natural origin of the spinal cord. We demonstrate robust survival and engraftment without additional injury site modifiers or neuroprotective biomaterials. Ex vivo differentiated neurons achieve cervical spinal cord matched transcriptomic and proteomic profiles, meeting functional electrophysiology parameters prior to transplantation. These data establish an approach for ex vivo developmentally accurate neuronal fate specification and subsequent transplantation for a more streamlined and predictable outcome in neural cell-based therapies of SCI.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Mohammad A. Altamimi ◽  
Afzal Hussain ◽  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Usamah Abdulrahman Alnemer

Introduction: Luteolin (LUT) is natural flavonoid with multiple therapeutic potentials and is explored for transdermal delivery using a nanocarrier system. LUT loaded cationic nanoemulsions (CNE1–CNE9) using bergamot oil (BO) were developed, optimized, and characterized in terms of in vitro and ex vivo parameters for improved permeation. Materials and methods: The solubility study of LUT was carried out in selected excipients, namely BO, cremophor EL (CEL as surfactant), labrasol (LAB), and oleylamine (OA as cationic charge inducer). Formulations were characterized with globular size, polydispersity index (PDI), zeta potential, pH, and thermodynamic stability studies. The optimized formulation (CNE4) was selected for comparative investigations (% transmittance as %T, morphology, chemical compatibility, drug content, in vitro % drug release, ex vivo skin permeation, and drug deposition, DD) against ANE4 (anionic nanoemulsion for comparison) and drug suspension (DS). Results: Formulations such as CNE1–CNE9 and ANE4 (except CNE6 and CNE8) were found to be stable. The optimized CNE4 based on the lowest value of globular size (112 nm), minimum PDI (0.15), and optimum zeta potential (+26 mV) was selected for comparative assessment against ANE4 and DS. The %T values of CNE1–CNE9 were found to be ˃95% and CEL content slightly improved the %T value. The spherical CNE4 was compatible with excipients and showed % total drug content in the range of 97.9–99.7%. In vitro drug release values from CNE4 and ANE4 were significantly higher than DS. Moreover, permeation flux (138.82 ± 8.4 µg/cm2·h), enhancement ratio (8.23), and DD (10.98%) were remarkably higher than DS. Thus, ex vivo parameters were relatively high as compared to DS which may be attributed to nanonization, surfactant-mediated reversible changes in skin lipid matrix, and electrostatic interaction of nanoglobules with the cellular surface. Conclusion: Transdermal delivery of LUT can be a suitable alternative to oral drug delivery for augmented skin permeation and drug deposition.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Navneet Kumar ◽  
Rohan Aggarwal ◽  
Meenakshi K. Chauhan

Abstract Background Majorly, the reason for the permanent loss of vision is glaucoma. But the currently available common treatment methodologies such as eye drops have various disadvantages like patient incompliance due to repeated administration and poor (1–5%) bioavailability leading to poor efficiency. The objective of this research was to formulate Eudragit-based nanoparticles of levobunolol incorporated into a contact lens to obtain sustained ocular delivery of levobunolol at the therapeutics level. Eudragit nanoparticles of levobunolol were formulated by nanoprecipitation methodology utilizing different ratios of Eudragit S100 and polyvinyl alcohol. The prepared nanoparticles were evaluated and optimized by efficiency of entrapment, particle size, morphology of surface and zeta potential. The optimized nanoparticles were then entrapped into the matrix of the contact lens by the soaking method which were then characterized and compared for optical clarity study, equilibrium swelling study, shelf life and in vitro drug release in simulated tear fluid followed by ex vivo transcorneal permeation study. Results Formulation F3 was obtained as optimized nanoparticle formulation with 102.61 nm ± 3.92 of particle size, − 22.2 mV ± 2.76 of zeta potential and 86.995% ± 1.902 of efficiency of entrapment. The equilibrium swelling index and transmittance of nanoparticle incorporated into contact lenses showed better results when compared to drug solution-loaded lenses. In vitro release indicated more sustained drug profiles (84.33% ± 0.34 of drug release over a period of 12 days) as compared to drug solution-loaded lenses (89.282% ± 0.900 of drug release over a period of 3 days). Ex vivo transcorneal permeation studies showed more permeation (6.75% ± 0.170) through contact lenses as compared to marketed eye drops (3.03% ± 0.088). Conclusion This research demonstrates the remarkable results of drug-laden contact lenses to serve as a great medium for the continued delivery of ocular drugs without affecting the physical and optical characteristics of the lens content.


2019 ◽  
Vol 9 (4) ◽  
pp. 330-340 ◽  
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

Objective: The objective of the current research is systematic optimization and development of microemulsion preconcentrates to get better solubility that results in improvement of oral bioavailability profile of Telmisartan utilizing D-optimal mixture design. Methods: Solubility studies in a variety of lipidic ingredients and optimization of formulations were carried out for the development of liquid SMEDDS. D-optimal mixture design was utilized for assessing the interaction performance of desired responses (such as % cumulative drug release and globule size) and optimized using desirability approach. The optimized batch was evaluated for its % cumulative drug release and globule size performance for determining the dissolution rate and oral bioavailability of drug. Results: The optimized batch (F-8), which contained 10% oil (Capmul MCM EP), 45% surfactant (Labrasol) and 45% co-surfactant (Transcutol HP) resulted in desired qualities of measured responses with 84.6nm globule size and 98.5% drug release within 15 minutes. Optimized SMEDDS showed brilliant goodness of fit between drug release. Stability studies indicated stability of the optimized SMEDDS batch over 3-month storage at 40°C/75% RH and improved dissolution rate in contrast to pure API. The optimized SMEDDS showed no impact of in vitro lipolysis on drug release. Conclusion: Developed and optimized SMEDDS showed improved in vitro dissolution rate and dissolution profile in contrast to pure drug. These investigations further confirm dose reduction in SMEDDS by gaining an equivalent therapeutic profile with non-SMEDDS formulation. This research work successfully shows the potential usage of SMEDDS for delivery of BCS-II class drugs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 138
Author(s):  
Heba F. Salem ◽  
Rasha M. Kharshoum ◽  
Heba A. Abou-Taleb ◽  
Hanan Osman Farouk ◽  
Randa Mohammed Zaki

Simvastatin (SIM) is a HMG-CoA reductase inhibitor employed in the management of hyperlipidemia. However, its low bioavailability limits its clinical efficacy. The objective of this study was to overcome the poor bioavailability of SIM via the transdermal application of a SIM-loaded niosomal gel. Niosomes loaded with SIM were fabricated by means of the thin-film hydration method and optimized through a 33-factorial design utilizing Design Expert® software. The prepared niosomes were evaluated for entrapment efficiency (EE%), zeta potential, vesicle size, and cumulative percentage of drug release. The optimum niosomal formulation was loaded on the gel and evaluated for physical properties such as color, clarity, and homogeneity. It was also evaluated for spreadability, and the cumulative % drug release. The best niosomal gel formula was appraised for ex vivo permeation as well as pharmacokinetic study. The SIM-loaded niosomes showed EE% between 66.7–91.4%, vesicle size between 191.1–521.6 nm, and zeta potential ranged between −0.81–+35.6 mv. The cumulative percentage of drug released was ranged from 55% to 94% over 12 h. SIM-loaded niosomal gels were clear, homogenous, spreadable, and the pH values were within the range of physiological skin pH. Furthermore, about 73.5% of SIM was released within 24 h, whereas 409.5 µg/cm2 of SIM passed through the skin over 24 h in the ex vivo permeation study. The pharmacokinetic study revealed higher AUC0–∞ and Cmax with topical application of SIM-loaded niosomal gel compared to topical SIM gel or oral SIM suspension. The topical application of SIM-loaded niosomal gel ascertained the potential percutaneous delivery of SIM.


2020 ◽  
Author(s):  
Qimin Song ◽  
Wei Chen ◽  
Zongqin Zhao ◽  
Shuchao Zhao ◽  
Lizhong Zhang

Abstract Introduction:Spinal cord injury includes inflammation and apoptosis of neurons, which is difficult to cure by systemic drug administration. Administration of natural active compounds (resveratrol and also Puerarin) by advance drug delivery technology improves the patient’s conditions.Material and Methods: Oil-in-water emulsion method was utilized to prepare resveratrol as well as puerarin loaded PLGA nanoparticles. The nanoparticles were subjected to mean zeta potential, mean particle size, encapsulation efficiency as well as in vitro drug release studies. The biochemical parameters i.e. malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), advanced oxidation products (AOPP), catalase (CAT) and nitrite/nitrate levels were tested for the loaded nanoparticles. Reperfusion injury induced rats treated with 10 mg/kg resveratrol and puerarin loaded nanoparticles protects spine from ischemia injury and supports biological parameters.Results: The mean particle size varies from 238 nm to 274 nm and also particle size distribution was mono-dispersed (0.239 to 0.318). Zeta potential value of nanoparticles was observed to be -12.6 ± 2.1 mV. Optimized nanoparticles reveals 72% -79% of drug release over 36 h by diffusion mechanism. Significantly, lowers the levels of plasma nitrite/nitrate level as well as phosphorylation of p38MAPK pathways in reperfusion injury induced rats.Conclusion: The resveratrol and puerarin loaded nanoparticles decreases free radicals produced by reperfusion injury induced rats, as well as decrease of oxidative stress because of IRI. Resveratrol and puerarin loaded nanoparticles decreases GSH, SOD and CAT antioxidant level, which helps in overall health improvement of patients.


Author(s):  
Pallavi M Chaudhari ◽  
Madhavi A Kuchekar

Objective: The aim of this study was to develop a nanoemulsion for topical delivery. Methods: Topical nanoemulsion was prepared by homogenization method. Box-behnken design was utilized to study the effect of oil, surfactant and Co-surfactant, on droplet size, entrapment efficiency and drug release. Nabumetone a non-steroidal anti-inflammatory drug was incorporated in castor oil with Tween 80 and Polyethylene glycol 600 to form the nanoemulsion by homogenization method. The nanoemulsion was further subjected to different evaluation parameters and ex-vivo study. The crystalline nature of drug was confirmed by powder X-ray diffraction studies. Drug-excipient compatibility was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), respectively. Results: The average globule size of nabumetone-containing nanoemulsion decreased with decrease in concentration of oil and surfactant. Nanoemulsion was evaluated by pH, rheology, globule size, zeta potential, scanning electron microscopy, DSC, FTIR spectroscopy, and stability. In vitro drug release shows maximum 84.35% permeation rate through cellophane membrane and ex-vivo drug release shows 86.32% permeation rate through goat skin. Conclusion: Thus, the nanoemulsion formulated showed good results regarding topical delivery.


Author(s):  
Bhupendra Prajapati ◽  
Umang Varia

The main objective of the research work was to improve the solubility of Bosentan by preparing Microemulsion (ME) for pulmonary artery hypertension therapy. Capmul MCM C8 was selected as oil, Tween 20 as a surfactant and Transcutol HP as a co-surfactant. From Pseudoternary phase diagram ratio of Smix (1:1) selected. From the Microemulsion area of ternary diagram different batches were prepared, but the drug was precipitate from the formulation which can be avoid by adding precipitate inhibitor. Pluronic F 127 was utilized as precipitate inhibitor in the concentration of 1.5%. The optimized formulation ME 8 contain oil (30 %V/V), Smix (60 %V/V) and water (10 %V/V). The prepared Microemulsion evaluated for globule size 96.71±0.11 nm, % transmittance 99.45±0.54 % and >99 % drug content. TEM confirm the spherical shape of globule. The physicochemical parameter of ME 8 was performed and to enhance the stability of Microemulsion it is converted in to solid ME by using adsorbent. Aeroperl 300 was selected as an adsorbent in the drug to adsorbent ratio (1:0.5 %W/W) based on physicochemical properties. From the in-vitro drug release investigation after 7 hours %CDR of ME 8 was found to be 78.87±0.17% and solid Microemulsion (SME 3) shows 76.83±0.29%. The pure drug shows only 27.63±0.23% CDR, which indicate that ME revealed better drug release than pure drug. There was a 2.8 fold increases in solubility compare to pure drug. From the In-vivo data compared to convention formulation, there was significant change in pharmacokinetics data observed.


Sign in / Sign up

Export Citation Format

Share Document