In silico T-cell and B-cell Epitope Based Vaccine Design Against Alphavirus Strain of Chikungunya

2020 ◽  
Vol 20 (4) ◽  
pp. 523-530 ◽  
Author(s):  
Maharij Haroon Jadoon ◽  
Zainab Rehman ◽  
Areeba Khan ◽  
Muhammad Rizwan ◽  
Sajid Khan ◽  
...  

Background: Chikungunya an arbovirus, is transmitted to humans by the bite of Aedes mosquito. The virus occurrences have been reported in Southeast Asian countries including Pakistan. Its symptoms include typical febrile illness and arthralgic syndrome. The virus has not decisively proved to be life-threatening. Methods: The attempt was to design T-cell and B-cell epitope-based vaccine for Chikungunya. The proteome of chikungunya was retrieved, antigenic proteins were identified and T-cell epitopes and B-cell epitopes were predicted. Interacting HLA alleles were also identified. The final analysis was done to confirm that predicted T-cell epitopes and B-cell epitopes can be used as a vaccine. Results: About 32 T-cell epitopes and a 10mer B-cell epitope were identified. Both T-cell and Bcell epitopes demonstrated strong interactions with HLA alleles. The predicted T-cell and B-cell epitopes were docked with respective HLA alleles. The docking analysis showed that the predicted respective epitopes best fit into the binding pockets of the alleles. Conclusion: On the basis of this computational analysis, it is suggested that these predicted epitopes can be used as a remedy against Alphavirus strain of chikungunya. Further laboratory experiments can be conducted to determine the efficacy and stability of this work.

2018 ◽  
Vol 49 (4) ◽  
pp. 1600-1614 ◽  
Author(s):  
Shudong He ◽  
Jinlong Zhao ◽  
Walid Elfalleh ◽  
Mohamed Jemaà ◽  
Hanju  Sun ◽  
...  

Background/Aims: The incidence of lectin allergic disease is increasing in recent decades, and definitive treatment is still lacking. Identification of B and T-cell epitopes of allergen will be useful in understanding the allergen antibody responses as well as aiding in the development of new diagnostics and therapy regimens for lectin poisoning. In the current study, we mainly addressed these questions. Methods: Three-dimensional structure of the lectin from black turtle bean (Phaseolus vulgaris L.) was modeled using the structural template of Phytohemagglutinin from P. vulgaris (PHA-E, PDB ID: 3wcs.1.A) with high identity. The B and T-cell epitopes were screened and identified by immunoinformatics and subsequently validated by ELISA, lymphocyte proliferation and cytokine profile analyses. Results: Seven potential B-cell epitopes (B1 to B7) were identified by sequence and structure based methods, while three T-cell epitopes (T1 to T3) were identified by the predictions of binding score and inhibitory concentration. The epitope peptides were synthesized. Significant IgE binding capability was found in B-cell epitopes (B2, B5, B6 and B7) and T2 (a cryptic B-cell epitope). T1 and T2 induced significant lymphoproliferation, and the release of IL-4 and IL-5 cytokine confirmed the validity of T-cell epitope prediction. Abundant hydrophobic amino acids were found in B-cell epitope and T-cell epitope regions by amino acid analysis. Positively charged amino acids, such as His residue, might be more favored for B-cell epitope. Conclusion: The present approach can be applied for the identification of epitopes in novel allergen proteins and thus for designing diagnostics and therapies in lectin allergy.


2002 ◽  
Vol 70 (7) ◽  
pp. 3479-3492 ◽  
Author(s):  
Ivette Caro-Aguilar ◽  
Alexandra Rodríguez ◽  
J. Mauricio Calvo-Calle ◽  
Fanny Guzmán ◽  
Patricia De la Vega ◽  
...  

ABSTRACT Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development.


2018 ◽  
Vol 8 ◽  
Author(s):  
Alberto Grandi ◽  
Laura Fantappiè ◽  
Carmela Irene ◽  
Silvia Valensin ◽  
Michele Tomasi ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 432 ◽  
Author(s):  
Jessica M. van Loben Sels ◽  
Kim Y. Green

Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Julio Alonso-Padilla ◽  
Esther M. Lafuente ◽  
Pedro A. Reche

Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt’s lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble.


2004 ◽  
Vol 83 (12) ◽  
pp. 936-940 ◽  
Author(s):  
J.-I. Choi ◽  
S.-W. Chung ◽  
H.-S. Kang ◽  
B.Y. Rhim ◽  
Y.-M. Park ◽  
...  

To identify T- and/or cross-reactive B-cell epitopes of P. gingivalis and human heat-shock protein (HSP)60 in atherosclerosis patients, we synthesized 104 overlapping synthetic peptides spanning whole molecules of P. gingivalis HSP60 and human HSP60, respectively. T-cell epitopes of P. gingivalis HSP were identified with the use of previously established P. gingivalis HSP-reactive T-cell lines. B-cell epitopes of P. gingivalis HSP60 and human HSP60 were identified by the use of patients’ sera. Anti- P. gingivalis, anti- P. gingivalis HSP60, or anti-human HSP60 IgG antibody titers were higher in the atherosclerosis patients compared with the healthy subjects. Five immunodominant peptides of P. gingivalis HSP60, identified as T-cell epitopes, were also found to be B-cell epitopes. Moreover, 6 cross-reactive B-cell epitopes of human HSP60 were identified. It was concluded that P. gingivalis HSP60 might be involved in the immunoregulatory process of atherosclerosis, with common T- and/or B-cell epitope specificities and with cross-reactivity with human HSP60.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Esther Blanco ◽  
Carolina Cubillos ◽  
Noelia Moreno ◽  
Juan Bárcena ◽  
Beatriz G. de la Torre ◽  
...  

Synthetic peptides incorporating protective B- and T-cell epitopes are candidates for new safer foot-and-mouth disease (FMD) vaccines. We have reported that dendrimeric peptides including four copies of a B-cell epitope (VP1 136 to 154) linked to a T-cell epitope (3A 21 to 35) of FMD virus (FMDV) elicit potent B- and T-cell specific responses and confer protection to viral challenge, while juxtaposition of these epitopes in a linear peptide induces less efficient responses. To assess the relevance of B-cell epitope multivalency, dendrimers bearing two (B2T) or four (B4T) copies of the B-cell epitope from type O FMDV (a widespread circulating serotype) were tested in CD1 mice and showed that multivalency is advantageous over simple B-T-epitope juxtaposition, resulting in efficient induction of neutralizing antibodies and optimal release of IFNγ. Interestingly, the bivalent B2T construction elicited similar or even better B- and T-cell specific responses than tetravalent B4T. In addition, the presence of the T-cell epitope and its orientation were shown to be critical for the immunogenicity of the linear juxtaposed monovalent peptides analyzed in parallel. Taken together, our results provide useful insights for a more accurate design of FMD subunit vaccines.


2021 ◽  
Vol 26 (5) ◽  
pp. 2901-2915
Author(s):  
SHEREEN F. ELKHOLY ◽  

The rapid outbreak of the new coronavirus SARS-COV-2 has created a major public health challenge. Immunoinformatics tools had a clear effect in tracking the genetic sequence of the virus and monitoring mutations and design vaccines that are effective enough to produce antibodies. In our study, we resorted to the emerging discipline of immunoinformatics in order to design a multi-epitope mRNA vaccine against the spike glycoprotein of SARS-CoV-2. We screened the B cell and T cell epitopes of the Spike glycoprotein. we used ABC pred server to predict B cell epitope in the spike glycoprotein sequence and we used NetMHC-4.1 server to predict the T-cell epitope. Then we selected the B cell and T cell epitopes that fulfilled the antigenicity, non-toxicity, non-allergenicity, induction of both IL4 and IFN gamma. Finally, we designed multi-epitope mRNA Vaccine construct by linking 6 B lymphocytes epitopes (BL) with 6 cytotoxic T lymphocytes epitopes (CTL) together with helper T lymphocyte (HTL) epitope up-streamed by 5’ cap and down-streamed by poly A tail. The vaccine was found to be antigenic, non-toxic, non-allergenic, capable of generating a robust immune response. Based on these parameters, this design can be considered a promising choice for a vaccine against SARS-CoV-2.


2020 ◽  
Author(s):  
Jian Zhou ◽  
Sun Jingjing ◽  
Gang Lu ◽  
Wanchun Wang ◽  
Lin Wang

Abstract Background: Coronavirus disease 2019 (COVID-19) poses a great threat to human health and life. We performed a bioinformatics analysis to compare the sequence, structure, and epitopes of SARS-CoV-2 spike (S) protein in 10 different countries. Methods: The amino acid sequences of SARS-CoV-2 S protein were obtained from the NCBI database. We used DNASTAR Lasergene software to analyze the protein’s secondary structures. SWISS-MODEL combined with VMD software was used to construct a 3D model of SARS-CoV-2 S protein. DNASTAR Protean and the IEDB database were used to analyze the B cell epitopes and T cell epitopes, respectively. Results: The results of B cell epitopes analysis indicated that the epitopes of SARS-CoV-2 S protein in Korea and American increased, which suggested that the antigenicity of SARS-CoV-2 in Czech, Korea and American might be enhanced. A small number of B cell epitopes disappeared in the SARS-CoV-2 S protein sequence from Greece, Australia, Sweden and India, which suggested that the antigenicity of SARS-CoV-2 in Greece, Australia, Sweden and India may be weakened. T cell epitope analysis indicated that the antigenicity of SARS-CoV-2 in Czech, Korea and American was enhanced, while antigenicity of SARS-CoV-2 in Greece, Australia, Inida, Sweden and Thailand may be weakened. The sequence of SARS-CoV-2 S protein has changed as the virus has spread, and the structures and epitopes have changed accordingly. Conclusion: The mutation leads to a decrease in the antigenicity of SARS-CoV-2, which may be a mechanism for the virus to evade surveillance by the immune system.


2020 ◽  
Author(s):  
Parvez Slathia ◽  
Preeti Sharma,

<p>The world is currently battling the Covid-19 pandemic for which there is no therapy available. Prophylactic measures like vaccines can effectively thwart the disease burden. The current methods of detection are PCR based and require skilled manpower to operate. The availability of cheap and ready to use diagnostics like serological methods can ease the detection of SARS-CoV-2 virus. In the current study, immunoinformatics tools have been used to predict T and B cell epitopes present in all the proteins of this virus. NetMHCPan, NetCTL and NetMHCII servers were used for T cell epitope prediction while BepiPred and ABCPred were used for B cell epitope prediction. Population coverage analysis for T cell epitopes revealed that these could provide protection to the people throughout world. The T cell epitopes can exclusively used for vaccine design whereas B cell epitopes can be used for both vaccine design and developing diagnostic kits. </p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document