Analysis of Bending Ability of Soft Pneu-nets Actuators for Soft Robotics

2020 ◽  
Vol 14 ◽  
Author(s):  
Yazhou Wang

Background: There has been an increasing interest in the soft pneumatic networks (also referred to as pneu-nets) actuators for soft robotics due to their innately softness, ease of fabrication and high customizability. More and more structures of the soft pneu-nets actuators are reported in various relevant patents and papers. Bending ability of soft pneu-nets actuator is one of key characterizing performance. It is characterized as a function of input air pressure as well as geometrical and material parameters, and influenced by the air pressures and design angle. Objective: In this paper, a new structure soft pneu-nets actuators (with different chambers morphology) was developed. The goal of this paper is to analyze the influences of the air pressures and design angle on the bending ability of the soft pneu-nets actuators with new structure. Method: Firstly, a new structure of soft pneu-nets (adjusting chamber’s shape), based on the soft pneu-nets architecture described previously was developed. Then, the soft pneu-nets actuators were treated with a standard Finite Element Method (FEM) using the Abaqus 6.14 Computer Aided Engineering (CAE) package. Several soft pneu-nets actuators with various design angle were analyzed to investigate the influence of the design angle on the bending ability. In order to investigate the effect of these parameters, the relationship between the angle of bending and these parameters were conducted.Thirdly, the influence of chambers morphology on bending ability of soft pneu-nets actuators could be assessed. Results: When the air pressure P is under 13.5 kPa, the differences of angle of bending under same design angle are not evident, but when the air pressure P is over 13.5 kPa, the differences of angle of bending at same design angle increase; At the same air pressure P, when the air pressure P is under 13.5 kPa, the difference of the angle of the bending between different design angle is less, The effect of gravity is greater than that of the air pressures P. When the air pressure P is over 13.5 kPa, however, the design angle shows more influential on the angle of the bending. Conclusion: The angle of bending increases with the increase of the air pressures P; the chambers with a bigger design angle (thinner inside walls) enabled greater bending at given air pressures P.

2018 ◽  
Vol 8 (8) ◽  
pp. 1338 ◽  
Author(s):  
José Rojas-Sola ◽  
Eduardo De la Morena-De la Fuente

This article analyzes the first self-propelled floating dredging machine designed and executed by Agustín de Betancourt in 1810 to dredge the port of Kronstadt (Russia). With this objective, a study of computer-aided engineering (CAE) has been carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite element method, of the 3D model which is reliable under operating conditions. The results have shown that the system of inertia drums proposed by Betancourt manages to dissipate the tensions between the different elements, locating the highest stresses in the links of the bucket rosary, specifically at the point of contact between links. Similarly, the maximum displacements and the greatest deformations (always associated with these points of greater stress), are far from reaching the limits of breakage of the material used in its construction, as well as the safety coefficient of the invention, confirming that the mechanism was oversized, as was generally the case at the time. This analysis highlights the talent of the Spanish engineer and his mastery of mechanics, in an invention, the first of its kind worldwide, which served the Russian Empire for many years.


2011 ◽  
Vol 299-300 ◽  
pp. 1231-1234
Author(s):  
Jian Li Wang ◽  
Yu Guang Li ◽  
Shu Fen Wang

The 3-D solid model with the software of Pro/Engineer was established. The computer aided engineering model of car seat with the methods “solid elements” was established. The elasticity of seat with ANSYS was calculated. Compared with the “force—distortion” curve of seat test, we examined the validity of modeling and the definition of materials.


2013 ◽  
Vol 446-447 ◽  
pp. 22-26
Author(s):  
Huan Yang Zhou ◽  
Qi Xia

Subject to a compressive membrane force, a film bonded to a compliant substrate often forms wrinkles. In the past, the studies of such wrinkles are mostly based on the assumption of semi-infinite substrate. However, such an assumption cannot be satisfied in real applications. This paper focuses on wrinkling of a rigid film on a compliant thin-substrate. The finite element method used to analyze wrinkling and investigate the relationship between the critical wavelength, material parameters (such as film Youngs modulus, substrate Poisson's ratio) and geometric parameters (such as substrate thickness). Meanwhile, the finite element results are compared with analytical results.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.


2015 ◽  
Vol 9 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Dmytro Fedorynenko ◽  
Sergiy Boyko ◽  
Serhii Sapon

Abstract The analysis of spatial functions of pressure considering the geometrical deviations and the elastic deformation of conjugate surace have been considered. The analysis of spatial functions of pressure is performed by the finite element method. The difference of the size of pressure in a tangential direction of a pocket of a support under various service conditions has been investigated. A recommendation for improving of operational characteristics in regulated hydrostatic radial bearing has been developed.


2010 ◽  
Vol 34-35 ◽  
pp. 641-645
Author(s):  
Hong Shuang Zhang

In order to fully understanding the distribution of residual stress after riveting and the relationship between residual stress and riveting process parameters during riveting, Finite Element Method was used to establish a riveting model. Quasi-static method to solve the convergence difficulties was adopted in riveting process. The riveting process was divided into six stages according to the stress versus time curves. The relationship of residual stress with rivet length and rivet hole clearance were established. The results show numerical simulation is effective for riveting process and can make a construction for the practical riveting.


Author(s):  
Y. F. Zhao ◽  
S. T. Tan ◽  
T. N. Wong ◽  
W. J. Chen

Abstract A constrained finite element method for modelling cloth deformation is developed. The bending deformation and the geometric constraint of developable surfaces of the cloth objects are considered. The representation of large rotation and the motion of rigid body are described using the current coordinates with the geometric constraint. The effectiveness of the present method is verified by comparing the thread deformation with the exact solution of catenary. Several examples are given to show that the proposed method converges quickly and is thus computationally efficient.


2016 ◽  
Vol 5 (1) ◽  
pp. 31-38
Author(s):  
Arpan Gupta ◽  
O.P. Singh

Finite element modeling (FEM) plays a significant role in the design of various devices in the engineering field of automotive, aerospace, defense etc. In the recent past, FEM is assisting engineers and healthcare professional in analyzing and designing various medical devices with advanced functionality. Computer aided engineering can predict failure circumstances, which can be avoided for the health and well-being of people. In this research work, computer aided engineering analysis of human elbow is presented beginning with modeling of human elbow from medical image data, and predicting the stresses in elbow during carrying heavy loads. The analysis is performed by using finite element method. The results predict the stress level and displacement in the human bone during heavy weight lifting. Thus, it can be used to predict the safe load that a particular person can carry without bone injury. The present analysis focused on a particular model of bone for a particular individual. However, safe load can be determined for various age groups by generating more detailed model including tendons, ligaments and by using patient specific material properties.


Author(s):  
D. Bucco ◽  
J. Mazumdar

AbstractA simple and efficient numerical technique for the buckling analysis of thin elastic plates of arbitrary shape is proposed. The approach is based upon the combination of the standard Finite Element Method with the constant deflection contour method. Several representative plate problems of irregular boundaries are treated and where possible, the obtained results are validated against corresponding results in the literature.


Sign in / Sign up

Export Citation Format

Share Document