scholarly journals Extraction of Clove and Vetiver Oils with Supercritical Carbon Dioxide: Modeling and Simulation

2007 ◽  
Vol 1 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Julian Martínez ◽  
Paulo T.V. Rosa ◽  
M. Angela A. Meireles

The kinetics of supercritical fluid extraction (SFE) of clove and vetiver oils using carbon dioxide as solvent was studied, in order to establish an efficient method to predict extraction curves on large scale. The mass transfer model of Sovová was used to adjust the experimental SFE data, which were obtained at 100 bar and 35 °C for clove and 200 bar and 40 °C for vetiver, using extraction columns of different geometry and solvent flow rates. Some other process parameters, such as bed density and porosity, solvent to feed ratio and solvent velocity were kept constant from one experiment to another, in order to verify if the mass transfer coefficients adjusted by the model varied. The results show that the model of Sovová was able to predict an overall extraction curve for clove from data obtained with twenty times less raw material, since the mass transfer coefficients remained the same and the predicted curves were similar to the observed ones. For vetiver, the simulation was not as effective, probably due to the effects of transport properties on the process.

Author(s):  
Robert A. Leishear ◽  
Hector N. Guerrero ◽  
Michael L. Restivo ◽  
David J. Sherwood

The equations describing mass transfer coefficients are rather concise, but experimental data is required to determine the coefficients. Here, mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and a Bingham plastic fluid, referred to as AZ101 simulant. The Bingham fluid differed from water since it required an applied yield stress to initiate flow. Newtonian fluids, like water, have a zero yield stress. Each of the fluids was saturated with oxygen, and the oxygen was removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single pipe which was co-axial to the column. The decrease in oxygen concentration was recorded, and the oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Mass transfer data for 24 different test conditions were determined. Superficial sparging velocities of 2, 5, and 10 mm/second were applied to each of the simulants at three different column fill levels, where the superficial velocity is defined as the average volumetric flow rate divided by the liquid surface area in the column. Mass transfer coefficient test results are presented herein for each test combination of superficial velocity and fluid level.


Author(s):  
Satoru Abe ◽  
Hideaki Okawa ◽  
Shigeo Hosokawa ◽  
Akio Tomiyama

Dissolution of single carbon dioxide (CO2) bubbles in a vertical pipe of 25 mm in diameter are measured to examine the effects of the ratio λ of sphere–volume equivalent bubble diameter d to pipe diameter D, liquid Reynolds number ReL and surfactants on mass transfer. The bubble diameter d and Reynolds number ReL are varied from 5.0 to 26 mm (λ = 0.20 − 1.0) and from 0 to 3100, respectively. Millipore water, tap water and water contaminated with Triton X–100 are used for the liquid phase. Mass transfer coefficients kL are evaluated from changes in d. The kL decreases with increasing λ for bubbles in stagnant millipore water because of the decrease in bubble rising velocity due to the wall effect. Measured Sherwood numbers Sh do not depend on ReL because a turbulent fluctuation velocity in bulk liquid flow is much smaller than a relative velocity between a bubble and liquid. The mass transfer correlation for a bubble in a stagnant liquid proposed by Johnson et al. is applicable to a bubble in pipe flow, provided that a correct relative velocity between a bubble and liquid is substituted in the correlation. Due to the retardation of capillary wave, mass transfer coefficients for bubbles in contaminated water becomes smaller than those in millipore and tap waters.


Author(s):  
Harish Ganapathy ◽  
Amir Shooshtari ◽  
Serguei Dessiatoun ◽  
Mohamed Alshehhi ◽  
Michael M. Ohadi

Natural gas in its originally extracted form comprises carbon dioxide and hydrogen sulfide as small, but non-negligible fractions of its dominant component, methane. Natural gas in the above form is typically subjected to a sweetening process that removes these acid gases. Microscale technologies have the potential to substantially enhance mass transport phenomena on account of their inherently high surface area to volume ratio. The present work reports the mass transfer characteristics during gas-liquid absorption in a microreactor. The absorption of CO2 mixed with N2 into aqueous diethanolamine was investigated in a single straight channel having a hydraulic diameter of 762 micrometer and circular cross-sectional geometry. The performance of the reactor was characterized with respect to the absorption efficiency and mass transfer coefficient. Close to 100% absorption efficiency was obtained under optimum operating conditions. Shorter channel lengths were observed to yield enhanced values of mass transfer coefficient on account of the improved utilization of the liquid reactants’ absorption capacity for a given reactor volume. In comparison to the 0.5 m long channel, the mass transfer coefficients with the 0.3 m and 0.1 m channels were higher on an average by 35.2% and 210%, respectively. Parametric studies investigating the effects of phase superficial velocity, liquid and gas phase concentration were performed. The mass transfer coefficients achieved using the present minichannel reactor were 1–3 orders of magnitude higher than that reported using conventional gas-liquid absorption systems.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Robert A. Leishear ◽  
Hector N. Guerrero ◽  
Michael L. Restivo ◽  
David J. Sherwood

Mass transfer rates were measured in a large scale system, which is consisted of an 8.4 m tall by 0.76 m diameter column, containing one of the three fluids: water with an antifoam agent, water without an antifoam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated and due to flammability concerns, oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from the solution as air bubbled up or sparged through the solution from the bottom of the column. Air sparging was supplied by a single tube, which was co-axial to the column; the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2 mm/s, 5mm/s, and 10 mm/s were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.


2012 ◽  
Vol 57 (4) ◽  
pp. 951-956 ◽  
Author(s):  
G. Siwiec

In the paper, results of the study on kinetics of aluminum evaporation from a liquid Ti-6Al-4V alloy during its smelting in a vacuum induction furnace are presented. The experiments were performed with the use of a VIM 20-50 furnace (manufactured by SECO-WARWICK) at 1973 K and 5-1000 Pa. Based on the values of changes in aluminum concentration in a liquid alloy, overall mass transfer coefficients were estimated. Within the analysed pressure range, the coefficient values changed from 0.97·10-5 ms-1 to 1.93·10-5 ms-1 for 1000 Pa and 5 Pa, respectively


Sign in / Sign up

Export Citation Format

Share Document