scholarly journals Electrochemical Polymerised Graphene Paste Electrode and Application to Catechol Sensing

2019 ◽  
Vol 13 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Jamballi G. Manjunatha

Objective: To build up an advantageous strategy for sensitive determination of catechol (CC), a poly (proline) modified graphene paste electrode (PPMGPE) was fabricated and used as a voltammetric sensor for the determination of CC. Methods: The performance of the modified electrode was studied using cyclic voltammetric (CV) and differential pulse voltammetric method (DPV). The modified electrode was characterized by CV and DPV. The surface of the modified electrode was examined by FESEM. The electrochemical behavior of CC in phosphate buffer solution (pH 7.5) was inspected using bare graphene paste electrode (BGPE) and PPMGPE. Results & Conclusion: The PPMGPE shows a lower limit of detection, calculated to be 8.7×10–7mol L−1 (S/N=3). This modified electrode was applied successfully for the determination of CC in water samples without applying any sample pretreatment.

Surfaces ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 191-204
Author(s):  
Edwin S. D’Souza ◽  
Jamballi G. Manjunatha ◽  
Chenthattil Raril ◽  
Girish Tigari ◽  
Huligerepura J. Arpitha ◽  
...  

A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis.


2019 ◽  
Vol 9 (2) ◽  
pp. 113-123 ◽  
Author(s):  
Sayed Zia Mohammadi ◽  
Hadi Beitollahi ◽  
Tahereh Rohani ◽  
Hossein Allahabadi

Electrochemical characteristics of carvacrol were investigated on a screen-printed electrode (SPE) modified with La2O3/Co3O4 nanocomposite by using voltammetric techniques, which displayed a well-defined peak for sensitive carvacrol determination in phosphate buffer solution (PBS) at pH 7.0. La2O3/Co3O4 nanoparticles demonstrated suitable catalytic activity for carvacrol determination by differential pulse voltammetry (DPV) technique. Besides, determination of carvacrol in a real samples was recognized in the light of electrochemical findings and a validated voltammetric technique for quantitative analysis of carvacrol in a real formulation was proposed. The DPV peak currents were found to be linear in the concentration range of 10.0 to 800.0 μM. The limit of detection (LOD) was found to be 1.0 μM.


2019 ◽  
Vol 14 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Girish Tigari ◽  
J.G. Manjunatha ◽  
D.K. Ravishankar ◽  
G. Siddaraju

An electrogenerated Polyarginine modified carbon paste electrode (PAMCPE) was fabricated through a simple electropolymerization procedure. The devised electrode was characterized by cyclic voltammetry (CV) and Field Emission Scanning Electron Microscopy (FESEM). This electrode was utilized for electrocatalytic estimation of Riboflavin (RF) and its instantaneous resolution with ascorbic acid (AA) and folic acid (FA) in phosphate buffer solution (PBS) of pH 6.0 by differential pulse voltammetry (DPV). It was observed to be a very responsive electrode for the electrochemical detection and quantification of RF. It was revealed that PAMCPE generates higher current response towards RF contrast to the bare carbon paste electrode (BCPE). Under optimized condition, the RF oxidation current values were linearly reliant on the RF concentration increment with a limit of detection (LOD) of 9.3·10-8 M using DPV. The stable PAMCPE was effectively applied for estimation of RF in B-complex pill and complex human blood serum samples.


2020 ◽  
Vol 18 (4) ◽  
pp. 253-258
Author(s):  
Gamze Erdoğdu

A sensitive and simple modified sensor was prepared by electrodeposition of diphenylamine sulfonic acid (DPSA) to the glassy carbon electrode surface by cyclic voltammetry (CV) technique. The electrooxidation of epinephrine (EP) was accomplished by CV and differential pulse voltammetry at poly(DPSA) modified sensor. As a result of the findings, the current values were enhanced and both substances were separated at the modified sensor compared to the bare electrode. There was linearly between the oxidation current and concentration of EP from 0.2 to 100 μM in phosphate buffer solution at pH 7.0. The limit of detection was 5.0 nM and the sensitivity was 0.4205 μA/μM. The determination of EP was successfully and satisfactorily carried out in real samples such as human blood serum and urine at the poly(DPSA) sensor. To the best knowledge of this work, this is the first study that detect the EP in the presence of ascorbic acid at poly(DPSA) sensor in the literature.


Surfaces ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 473-483
Author(s):  
Jamballi G. Manjunatha

An electrochemical sensor, based on a graphene paste electrode (GPE), was modified with a polymerization method, and the electrochemical behavior of catechol (CC) and hydroquinone (HQ) was investigated using electroanalytical methods like cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The effect of CC at the modified electrode was evidenced by the positive shift of the oxidation peak potential of CC at the poly (rosaniline)-modified graphene paste electrode (PRAMGPE) and the nine-fold enhancement of the peak current, as compared to a bare graphene paste electrode (BGPE). The sensitivity of CC investigated by DPV was more sensitive than CV for the analysis of CC. The DPV method showed the two linear ranges of 2.0 × 10−6–1.0 × 10−5 M and 1.5 × 10−5–5 × 10−5 M. The detection limit and limit of quantification were determined to be 8.2 × 10−7 and 27.6 × 10−7 M, respectively. The obtained results were compared successfully with respect to those obtained using the official method. Moreover, this sensor is applied for the selective determination of CC in the presence of HQ. The high sensitivity, good reproducibility, and wide linear range make the modified electrode suitable for the determination of CC in real samples. The practical application of the sensor was demonstrated by determining the concentration of CC in water samples with acceptable recoveries (97.5–98%).


2021 ◽  
Vol 17 ◽  
Author(s):  
Maliheh Montazarolmahdi ◽  
Mahboubeh Masrournia ◽  
Azizollah Nezhadali

Background: A drug sensor (salicylic acid, in this case) was designed and made up of this research. The senor was made by modification of paste electrode (MPE) with CuO-SWCNTs and 1-hexyl-3-methylimidazolium chloride (HMICl). The MPE/CuO-SWCNTs/HMICl showed catalytic activity for the oxidation signal of salicylic acid in phosphate buffer solution. Methods: Electrochemical methods were used as a powerful strategy for the determination of salicylic acid in pharmaceutical samples. Aiming at this goal, carbon paste electrode was amplified with conductive materials and used as a working electrode. Results: The MPE/CuO-SWCNTs/HMICl was used for the determination of salicylic acid in the concentration range of 1.0 nM – 230 µM using differential pulse voltammetric (DPV) method. At pH=7.0, as optimum condition, the MPE/CuOSWCNTs/HMICl displayed a high-quality ability for the determination of salicylic acid in urine, pharmaceutical serum, and water samples. Conclusion: The MPE/CuO-SWCNTs/HMICl was successfully used as a new and high performance working electrode for the determination of salicylic acid at a nanomolar level and in real samples.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
A. B. Teradale ◽  
S. D. Lamani ◽  
B. E. Kumara Swamy ◽  
P. S. Ganesh ◽  
S. N. Das

A polymeric thin film modified electrode, that is, poly(niacinamide) modified carbon paste electrode (MCPE), was developed for the electrochemical determination of catechol (CC) by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE), the poly(niacinamide) MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS) of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide) modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M) and limit of quantification (10S/M) were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.


2019 ◽  
Vol 9 (3) ◽  
pp. 187-195 ◽  
Author(s):  
Somayeh Tajik ◽  
Hadi Beitollahi ◽  
Mohammad Reza Aflatoonian

Flower-like La3+/ZnO nanocomposite was facile synthesized. A simple and ultrasensitive sensor based on graphite screen printed electrode (SPE) modified by La3+/ZnO nanoflower was developed for the electrochemical determination of dopamine. The electrochemical behavior of dopamine was studied in 0.1 M phosphate buffer solution (PBS) using cyclic voltammetry (CV), chronoamperometry (CA) and differential pulse voltammetry (DPV). Compared with the unmodified graphite screen printed electrode, the modified electrode facilitates the electron transfer of dopamine, since it notably increases the oxidation peak current of dopamine. Also, according to CV results the maximum oxidation of dopamine on La3+/ZnO/SPE occurs at 150 mV which is about 140 mV more negative compared with unmodified SPE. Under optimized conditions, the modified electrode exhibited a linear response over the concentration range from 0.15 to 300.0 μM, with a detection limit of 0.08 μM (S/N = 3). The proposed sensor exhibited a high sensitivity, good stability and was successfully applied for dopamine determination in dopamine ampoule, with high recovery.


2020 ◽  
Vol 16 (5) ◽  
pp. 591-600
Author(s):  
Şevket Zişan Yağcı ◽  
Ebru Kuyumcu Savan ◽  
Gamze Erdoğdu

Objective: In this study, it was aimed to prepare an electrochemical sensor capable of assigning Norepinephrine in the presence of an interference such as ascorbic acid. Methods: A sensitive modified sensor was prepared by electrodeposition of p-aminobenzenesulfonic acid (p-ABSA) to the glassy carbon electrode by cyclic voltammetry. The electrooxidation of Norepinephrine was accomplished by cyclic and differential pulse voltammetry. Results: The current values were enhanced and the peak potentials of Norepinephrine and ascorbic acid were separated at the sensor compared to the bare electrode. There was linearity between the oxidation current and concentration of Norepinephrine ranging from 0.5 to 99.8 μM in phosphate buffer solution at pH 7.0. The limit of detection was 10.0 nM and the sensitivity was 0.455 μA/μM. Conclusion: The determination of Norepinephrine was successfully performed in real samples such as blood serum and urine at the poly (p-ABSA) sensor. To the best of our knowledge, this is the first study to detect Norepinephrine in the presence of ascorbic acid at poly (p-ABSA) modified sensor in the literature.


2021 ◽  
Author(s):  
Ebrahim Nabatian ◽  
Mahdi Mousavi ◽  
Mostafa Pournamdari ◽  
Saeid Ahmadzadeh

Abstract A simple and precise analytical approach developed for single and simultaneous determination of resorcinol (RC) and hydroquinone (HQ) in pharmaceutical samples using carbon paste electrode (CPE) modified with 1-Ethyl-3-methylimidazolium tetrafluoroborate as ionic liquid and ZnFe2O4 nanoparticle. A significant enhancement in the peak current and sensitivity of the proposed sensor observed by using modifiers in the composition of working electrode compared to bare CPE which is in accordance with the results obtained from electrochemical impedance spectroscopy investigations. Electrochemical investigations revealed a well-defined irreversible oxidation peak for RC over a wide concentration range from 3.0 µM to 500 µM in 0.1 M phosphate buffer solution (pH 6.0) with the linear regression equations of Ip (µA) = 0.0276 CRC (µM) + 0.5508 (R2 = 0.997). The limit of detection and quantification for RC analysis were found to be 1.46 µM and 4.88 µM, respectively. However, the obtained SW voltammograms for simultaneous determination of RC and HQ exhibited a desirable peak separation of about 360 mV potential difference and a satisfactory linear response over the range of 50-700 µM and 5-350 µM with the favorable correlation coefficient of 0.991 and 0.995, respectively. The diffusion coefficient (D) of RC and the electron transfer coefficient (α) at the surface of ZnFe2O4/NPs/IL/CPE estimated to be 2.83×10−4 cm s−1 and 0.76. The proposed sensor as a promising and low-cost method successfully applied for determination of RC in commercial pharmaceutical formulations such as the resorcinol cream of 2% O/W emulsion available on the market with the recovery of 98.47±0.04.


Sign in / Sign up

Export Citation Format

Share Document