scholarly journals Computation of Normal Depth in Parabolic Cross Sections Using The Rough Model Method

2014 ◽  
Vol 8 (1) ◽  
pp. 213-218
Author(s):  
Bachir ACHOUR

A new method is applied to calculate the normal depth in an open channel of parabolic cross section. This is the rough model method whose main particularity is to ignore the flow resistance coefficients, such as Chezy’s coefficient and manning’s roughness coefficient. The method is applied to a referential rough model, whose friction coefficient is constant, which explicitly express the hydraulic and geometric characteristics of the model such as aspect ratio. By means of a non-dimensional correction factor, the normal depth is explicitly deduced. The rough model method is applicable to the entire domain of turbulent flow.

2014 ◽  
Vol 955-959 ◽  
pp. 3231-3237
Author(s):  
Bachir Achour

The recurring problem of calculating the normal depth in a trapezoidal open channel is easily solved by the rough model method. The Darcy-Weisbach relationship is applied to a referential rough model whose friction factor is arbitrarily chosen. This leads to establish the non-dimensional normal depth relationship in the rough model. Through a non-dimensional correction factor of linear dimension, the aspect ratio and therefore normal depth in the studied channel is deduced. Keywords: Rough model method, Trapezoidal channel, Normal depth, Turbulent flow, Discharge, Energy slope.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 47 ◽  
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Alessandro Errico ◽  
Simona Francalanci ◽  
Luca Solari ◽  
Federico Preti ◽  
...  

This study presents a methodology for improving the efficiency of Baptist and Stone and Shen models in predicting the global water flow resistance of a reclamation channel partly vegetated by rigid and emergent riparian plants. The results of the two resistance models are compared with the measurements collected during an experimental campaign conducted in a reclamation channel colonized by Common reed (Phragmites australis (Cav.) Trin. ex Steud.). Experimental vegetative Chézy’s flow resistance coefficients have been retrieved from the analysis of instantaneous flow velocity measurements, acquired by means of a downlooking 3-component acoustic Doppler velocimeter (ADV) located at the channel upstream cross section, and by water level measurements obtained through four piezometers distributed along the reclamation channel. The main morphometrical vegetation features (i.e., stem diameters and heights, and bed surface density) have been measured at six cross sections of the vegetated reclamation channel. Following the theoretical assumptions of the divided channel method (DCM), three sub-sections have been delineated in the reference cross section to represent the impact of the partial vegetation cover on the cross sectional variability of the flow field, as observed with the ADV measurements. The global vegetative Chézy’s flow resistance coefficients have been then computed by combining each resistance model with four different composite cross section methods, respectively suggested by Colebatch, Horton, Pavlovskii, and Yen. The comparative analysis between the modeled and the experimental vegetative Chézy’s coefficients has been performed by computing the relative prediction error (εr, expressed in %) under two flow rate regimes. Stone and Shen model combined with the Horton composite cross section method provides vegetative Chézy’s coefficients with the lowest εr.


Author(s):  
Xiaokang Xin ◽  
Fengpeng Bai ◽  
Kefeng Li

A numerical model based on the Saint-Venant equations (one-dimensional shallow water equations) is proposed to simulate shallow flows in an open channel with regular and irregular cross-section shapes. The Saint-Venant equations are solved by the finite-volume method based on Godunov-type framework with a modified Harten, Lax, and van Leer (HLL) approximate Riemann solver. Cross-sectional area is replaced by water surface level as one of primitive variables. Two numerical integral algorithms, compound trapezoidal and Gauss–Legendre integrations, are used to compute the hydrostatic pressure thrust term for natural streams with arbitrary and irregular cross-sections. The Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and second-order Runge–Kutta methods is adopted to achieve second-order accuracy in space and time, respectively. The performance of the resulting scheme is evaluated by application in rectangular channels, trapezoidal channels, and a natural mountain river. The results are compared with analytical solutions and experimental or measured data. It is demonstrated that the numerical scheme can simulate shallow flows with arbitrary cross-section shapes in practical conditions.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 745
Author(s):  
Elżbieta Kubrak ◽  
Janusz Kubrak ◽  
Adam Kozioł ◽  
Adam Kiczko ◽  
Marcin Krukowski

Water flow in channels with a compound cross-section involves an exchange of water mass and momentum between the slower flowing water in the floodplains and the faster water in the main channel. This process is called the streams interaction. As a result, the water velocity in the main channel decreases, and at the same time the velocity and depth of flow increase in the part of the floodplains adjacent to the main channel. Diversification of the surface roughness of the main channel and floodplains significantly affects the form of interactions. The results of laboratory experiments were used to characterize the influence of interactions on the discharge capacity of the channel with diversified roughness. The reduction in velocity of the main channel caused by the stream interactions is described with the apparent friction coefficients introduced at the boundary between the main channel and the floodplain. The obtained values of resistance coefficients, supplemented with the values from experiments reported in the literature, were used to establish a relationship useful in assessing the discharge capacity of such channels.


2007 ◽  
Vol 129 (8) ◽  
pp. 1058-1072 ◽  
Author(s):  
M. F. Tachie ◽  
K. K. Adane

A particle image velocimetry was used to study shallow open channel turbulent flow over d-type and k-type transverse ribs of square, circular, and semi-circular cross sections. The ratio of boundary layer thickness to depth of flow varied from 50% to 90%. The mean velocities and turbulent quantities were evaluated at the top plane of the ribs to characterize interaction between the cavities and overlying boundary layer. It was found that the overlying boundary layer interacts more strongly with k-type cavities than observed for d-type cavities. The profiles of the mean velocities and turbulent statistics were then spatially averaged over a pitch, and these profiles were used to study the effects of rib type and cross section on the flow field. The mean velocity gradients were found to be non-negligible across the boundary layer, and the implications of this observation for momentum transport, eddy viscosity, and mixing length distributions are discussed. The results show that the skin friction coefficient, Reynolds stresses and mixing length distributions are independent of rib cross section for d-type. For the k-type ribs, significant variations in skin friction coefficient values, mean flow, and turbulence fields are observed between square ribs and circular/semi-circular ribs.


Author(s):  
Thomas Gietzelt ◽  
Volker Toth ◽  
Manfred Kraut ◽  
Uta Gerhards ◽  
Robin Duerrschnabel

Diffusion bonding is often used on pre-machined parts to generate internal cavities, e.g. for cooling injection molding tools close to the mold cavity. Only then, the workpieces are finished to their final dimensions. In the case of micro-process devices, however, it is essential to precisely control the deformation, as otherwise uncontrollable pressure losses will occur with channel cross-sections in the sub-millimeter range. Post-processing is not possible. The most important process parameters for diffusion bonding are temperature, dwell time and contact pressure, with the bonding temperature and contact pressure acting in opposite directions and showing a strong non-linear dependence on deformation. In addition, the deformation is influenced by a number of other factors such as the absolute size of the cross-section and the aspect ratio of the parts, the dimensions and distribution of the internal cross sections and the overall percentage of the cross-section to be bonded. In micro process engineering, small material cross-sections in the range of the materials microstructure can facilitate additional deformation mechanisms such as grain boundary sliding, which are not relevant at all for larger structures. For parts consisting of multiple layers, tolerances in thickness and roughness of multiple surfaces must be levelled, contributing to the percentaged deformation. This makes it difficult, especially in micro process engineering and in single or small series production, to determine suitable joining parameters in advance, which on the one hand do not cause unforeseen large deformations, but on the other hand reliably produce highly vacuum-tight components. Hence, a definition of a fixed percentaged deformation does not work for all kinds of components. This makes it difficult to specify parameters for surely obtain high-vacuum tight parts. For successful diffusion bonding, atoms must diffuse over the bonding planes, forming a monolithic part in which the original layers are no longer visible. Only then, mechanical properties identical to those of the base material, which has been subjected to identical heat treatment, can be achieved. In this paper, the impacts of different material cross section widths as well as of the aspect ratio on deformation were investigated. By accident, it was found that also accuracy of the temperature measurement may have a serious impact in terms of deformation.


2021 ◽  
Author(s):  
Saeid Okhravi ◽  
Radoslav Schügerl ◽  
Yvetta Velísková

Abstract The study addresses the research concern that the employment of fixed value for bed roughness coefficient in lowland rivers (mostly ‌sand-bed rivers) is deemed practically questionable in the presence of a mobile bed and time-dependent changes in vegetation patches. To address this issue, we set up 45 cross-sections in four lowland streams to investigate seasonal flow resistance values within a year. The results first revealed that the significant sources of boundary resistance in lowland rivers with lower regime flow are bed forms and aquatic vegetation. Then, the study uses flow discharge as an influential variable reflecting the impacts of the above-mentioned sources of resistance to flow. The studied approach ended up with two new flow resistance predictors which simply connect dimensionless unit discharge with flow resistance factors, Darcy-Weisbach (f) and Manning (n) coefficients. A comparison between the computed and measured flow resistance values indicates that 87-89% of data sets were within the ±20% error bands. The flow resistance predictors are also verified against large independent sets of field and flume data. The obtained predictions using the developed predictors may overestimate flow resistance factors to about 40% for other lowland rivers. From a different view of this research, the findings on seasonal variation of vegetation abundance hint at the augmentation in flow resistance values, both f, and n, in low summer flows when the vegetation covers river bed and side banks. The highest amount of flow resistance was observed during the summer period, July-August.


2004 ◽  
Vol 71 (3) ◽  
pp. 429-433 ◽  
Author(s):  
N. G. Stephen ◽  
P. J. Wang

A finite element-transfer matrix procedure developed for determination of Saint-Venant decay rates of self-equilibrated loading at one end of a semi-infinite prismatic elastic rod of general cross section, which are the eigenvalues of a single repeating cell transfer matrix, is applied to the case of a rectangular cross section. First, a characteristic length of the rod is modelled within a finite element code; a superelement stiffness matrix relating force and displacement components at the master nodes at the ends of the length is then constructed, and its manipulation provides the transfer matrix, from which the eigenvalues and eigenvectors are determined. Over the range from plane stress to plane strain, which are the extremes of aspect ratio, there are always eigenmodes which decay slower than the generalized Papkovitch-Fadle modes, the latter being largely insensitive to aspect ratio. For compact cross sections, close to square, the slowest decay is for a mode having a distribution of axial displacement reminiscent of that associated with warping during torsion; for less compact cross sections, slowest decay is for a mode characterized by cross-sectional bending, caused by self-equilibrated twisting moment.


2016 ◽  
Vol 48 (1) ◽  
pp. 133-146 ◽  
Author(s):  
S. Song ◽  
B. Schmalz ◽  
J. X. Zhang ◽  
G. Li ◽  
N. Fohrer

Seldom studied before, the vertical profile velocity is indicative of the flood process and nutrient transportation process. In this paper, a substitution of cross section hydraulic radius with vertical depth was made to the Manning formula, which was then applied in the vertical profile velocity determination. Simultaneously, the determination accuracy and its relationship with hydraulic conditions were discussed, based on the 1050 vertical profiles sampled from 140 cross sections in flood and moderate level seasons. The observations show the following. (1) The modified Manning formula provides a simplified approach for vertical profile velocity determination with acceptable accuracy. (2) The fitting quality of the profile velocity from the middle region of the cross section and the flood season were higher than that from near the bank or the moderate level season. The coefficient of determination (R2) of the regression for the moderate level season and the flood season were 0.55 and 0.58, while the Nash–Sutcliffe coefficients were 0.64 and 0.82, respectively. (3) Analysis of the determination error and the coefficient of variation showed a positive correlation with the river aspect ratio. This seems to suggest that the modified Manning formula tends to be more applicable in narrow and deep rivers. More measurements from rivers or channels with a high aspect ratio would be meaningful for future research.


Author(s):  
Shunichi KOMETANI ◽  
Takuya UOTANI ◽  
Kohji MICHIOKU ◽  
Keiichi KANDA ◽  
Yoshiyuki IRIE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document