scholarly journals The Effect of Hybrid Fibers Reinforcement on the Mechanical and Physical Properties of Concrete

2020 ◽  
Vol 14 (1) ◽  
pp. 207-216
Author(s):  
Zaher I. Khayoun ◽  
Hamza M. Kamal ◽  
Yasir K. Ibrahim

Background: Hybrid fiber reinforced concrete is the use of two or more than two fiber textures in a single concrete matrix to improve the overall properties of concrete. Materials and Methods: In this study, the ductility of medium strength concrete was observed to improve by incorporating steel and polypropylene in a ratio of 50:50 as a hybrid fiber. Four proportions of Volume fractions (Vf) were used (0.25, 0.5, 0.75, 1%). The changes in the mechanical properties and density occurred due to the addition of these hybrid fibers. Results: The features examined include bulk density, compressive strength, and flexural strength by using thirteen concrete mixtures with various volume fractions of steel and polypropylene fibers. Discussion: The results showed a significant increase in compressive and flexural strength due to the addition of steel fibers. On the other hand, polypropylene fibers exhibited minor changes in the mechanical properties of hardened concrete exclusively in the mixtures made with both steel and polypropylene fibers in which the strength increased in comparison to plain concrete by 4.4% and to steel fiber group having the optimal strength and other properties. Conclusion: These remarks provide a clear view of the importance of using different fiber reinforcing systems to improve the mechanical performance of concrete, which is considered quasi-brittle.

2018 ◽  
Vol 7 (4) ◽  
pp. 2178 ◽  
Author(s):  
Sallehan Ismail ◽  
Mohammad Asri Abd Hamid ◽  
Zaiton Yaacob ◽  
Dzulkarnaen Ismail ◽  
Hazizan Md Akil

This study investigated the hybrid effects of two types of microfiber, namely, polypropylene and nylon, on the mechanical properties of high-strength mortar, which produced fine recycled aggregate (FRA). The amount of microfibers was maintained at a volumetric fraction of 0.6%. The microstructure and mechanical strength properties (compressive strength and flexural strength) of recycled mortar reinforced with hybrid-size microfibers were evaluated at various curing ages. Experimental results show that the inclusion of hybrid fibers significantly influenced the mechanical performance of the recycled mortar. The hybridization fiber at volume fraction 0.3% polypropylene + 0.3% nylon yielded the most promising mechanical performance. Enhancements of 8% on compressive and 11% flexural strength were achieved at 28 days. Scanning electron microscopy observations revealed that reinforcement at the microscale prohibited the initiation and growth of cracks at the micro level. High loads were required to form macrocracks within composites, thereby improving the mechanical strength of the mortar matrix.  


2011 ◽  
Vol 243-249 ◽  
pp. 5941-5945
Author(s):  
Ya Fang Zhang ◽  
Lin Li ◽  
Hao Liu

With numerical modeling in meso level, impaction of incorporating polypropylene fibers with two different geometry dimensions on flexural strength and toughness of hybrid fiber concrete has been studied in this paper. Mechanism of such hybrid fiber reinforcement has also been analyzed. The results show that hybrid of fibers with different geometric dimensions would bring about synergy, thus fiber enhancement effect could be demonstrated. Furthermore, the closer the incorporation ratio of these two kinds fibers are to each other, the more evident the enhancement will be produced. The most optimized hybrid ratio is in between 2:1 and 1:1.


2011 ◽  
Vol 194-196 ◽  
pp. 1103-1108 ◽  
Author(s):  
Yong Xin Yang ◽  
Jie Lian

In this paper, mechanical performances of 480 specimens are tested and influences of basalt fiber ratio, slenderness, soakage material are studied. Results indicate that mechanical properties of BFRC are better than plain concrete. It can be found that the best mechanical performance may be get when the basalt fiber soaked by water-solubility material and its ratio at 8.4 to 14 kg per square meter as well as slenderness at 600 to 800.


2011 ◽  
Vol 228-229 ◽  
pp. 627-633
Author(s):  
Tammam Merhej ◽  
Liang Liang Cheng ◽  
De Cheng Feng

The effect of adding polypropylene fibers; with different shapes and volume fractions; on the compressive strength, modulus of rupture, load-deflection curve and flexural toughness (equivalent flexural strength ratio) of concrete was investigated. Crimped and twisted polypropylene fibers were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. It was found that the compressive strength, flexural strength and the equivalent flexural strength ratio of concrete increased about 11%, 25% and 40% respectively by adding 0.6% volume fraction of twisted polypropylene fiber. In addition; it was found that the contribution of polypropylene fiber to the flexural strength and flexural toughness was more effective when twisted polypropylene fiber was added comparing to crimped polypropylene fibers. The experimental results were used in numerical example using FAARFIELD program to explore the airfield pavement thickness reduction resulted from polypropylene fiber incorporation.


2021 ◽  
Vol 895 ◽  
pp. 130-138
Author(s):  
Maher Faroq Al-Lebban ◽  
Abeer Ibraheem Khazaly ◽  
Rana Shabbar ◽  
Qusay A. Jabal ◽  
Layth Abdul Rasool Al Asadi

This investigation aims to improve some of the mechanical properties of concrete such as compressive strength, flexural strength, and modulus of elasticity, by using different percentages of polypropylene fibers, and also studying the durability of concrete for freeze-thaw cycles. the study shows a small increment in compressive strength due to adding fibers which were 28.3% compared with increment in flexural strength which was perfect (about 191%), modulus of elasticity also increased by adding fibers. The durability of concrete against freezing-thaw cycles for all mixes was studied. Fiber-reinforced concrete shows more durability against freezing-thawing cycles and less reduction in strength compared with reference mixes without fibers,21.5% reduction in strength for optimum polypropylene fiber concrete while the reduction in strength for normal concrete was found 54.2% in this study.


2009 ◽  
Vol 610-613 ◽  
pp. 69-75
Author(s):  
Yuan Hua ◽  
Tai Quan Zhou

Different kinds of fiber are used to reinforce the concrete to improve the concrete mechanical properties. The high modulus and high flexibility fibers are often used to reinforce in the cement base, which leads to the higher performance compound cement based materials. In the paper, the carbon fiber and glass fiber material are used as flexibility reinforced materials. The polypropylene fiber and the polyethylene fiber are used as strength reinforced materials. The combinations of the flexibility reinforced fiber and strength reinforced fiber are chosen as C-P HF (Carbon and Polypropylene Hybrid Fiber) and G-Pe HF (Glass and Polyethylene Hybrid Fiber). The concrete mixture ratio and the fiber-reinforced amount are determined to the author’s previous study. The relationship between compressive strength, flexural strength and length/diameter aspect ratio of fiber for the carbon and polypropylene hybrid fiber reinforced concrete (C-P HFRC), and for the glass and polyethylene hybrid fiber reinforced concrete (G--Pe HFRC) was tested and discussed. The testing results show that length/diameter aspect ratio of fiber obviously affects the flexural strength of C-P HFRC and G-Pe HFRC, though the compressive strength is slightly affected by the length-diameter aspect ratio.


YMER Digital ◽  
2021 ◽  
Vol 20 (11) ◽  
pp. 421-430
Author(s):  
M. Sriram ◽  
◽  
K.R. Aswin Sidhaarth ◽  
◽  
◽  
...  

Increasing demand and inadequate materials availability leads the researchers to find alternate materials. In general, hybrid fiber is nothing but mixture of two or more fibers. In this review, various properties of steel fibers and polypropylene fibers were studied. In order to study the physical and mechanical properties of steel fiber, polypropylene fiber and other materials used in concrete, various tests such as Slump cone test, Compaction factor, Compressive strength , flexural strength etc., were used. Hybrid fibers have the tendency to control cracks at different levels. Workability of concrete get reduced due to more addition of steel fibers.The addition of steel fiber and polypropylene fiber results in an increase of 12 to 14.30% compressive strength, 33 to 36.6% increase in flexural strength and 9 to 10.16% increase in split tensile strength. Addition of most favorable amount 0.9 to 1% of steel fiber and 0.9 to 1% of polypropylene fiber gives maximum compressive strength up to 41.67 to 42.68%. Split tensile strength increases by increasing the fiber content in concrete but workability decreases when steel fiber content is increased in concrete.


2012 ◽  
Vol 7 (4) ◽  
pp. 155892501200700 ◽  
Author(s):  
Roohollah Bagherzadeh ◽  
Hamid Reza Pakravan ◽  
Abdol-Hossein Sadeghi ◽  
Masoud Latifi ◽  
Ali Akbar Merati

The influence of polypropylene fibers has been studied in different proportioning and fiber length to improve the performance characteristics of the lightweight cement composites. Fibers used in two different lengths (6mm and 12mm) and fiber proportions (0.15% and 0.35%) by cement weight in the mixture design. Hardened concrete properties such as: 7- and 28-day compressive strength, splitting tensile strength, flexural strength, water absorption, and shrinkage were evaluated. Fiber addition was seen to enhance the physical and mechanical properties of lightweight concrete. Compared to unreinforced LWC, polypropylene (PP) reinforced LWC with fiber proportioning 0.35% and 12 mm fiber length, caused 30.1% increase in the flexural strength and 27% increase in the splitting tensile strength. Increased fiber availability in the LWC matrix, in addition to the ability of longer PP fibers to bridge on the micro cracks, are suggested as the reasons for the enhancement in mechanical properties.


2021 ◽  
Vol 20 (1) ◽  
pp. 37-51
Author(s):  
Kubilay Akçaözoğlu ◽  
◽  
Adem Kıllı ◽  

In this study, the effect of curing conditions on the mechanical properties of slurry infiltrated fiber reinforced concrete (SIFCON) was investigated. For this purpose, SIFCON samples containing 4% and 8% steel fiber with two different aspect ratios were produced. The samples were subjected to three different curing types, namely standard, dry and accelerated curing methods. Ultrasonic wave velocity, flexural strength, fracture toughness, compressive strength, impact resistance and capillary water absorption tests were performed on the samples. The highest flexural strength was found to be achieved in the samples with an aspect ratio of 55 and a content of 8% steel fiber. The most suitable curing method was determined as the standard curing method and the best flexural strength was achieved at the rate of 8%. According to the test results, the best strength properties were achieved in the samples exposed to the standard curing method. In addition, the samples exposed to the accelerated curing method showed satisfactory values. The accelerated curing method can be used as an alternative in SIFCON production especially in applications requiring mass production.


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


Sign in / Sign up

Export Citation Format

Share Document