scholarly journals Simplified and Accurate Stiffness of a Prismatic Anisotropic Thin-Walled Box

2018 ◽  
Vol 12 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Giacomo Canale ◽  
Felice Rubino ◽  
Paul M. Weaver ◽  
Roberto Citarella ◽  
Angelo Maligno

Background:Beam models have been proven effective in the preliminary analysis and design of aerospace structures. Accurate cross sectional stiffness constants are however needed, especially when dealing with bending, torsion and bend-twist coupling deformations. Several models have been proposed in the literature, even recently, but a lack of precision may be found when dealing with a high level of anisotropy and different lay-ups.Objective:A simplified analytical model is proposed to evaluate bending and torsional stiffness of a prismatic, anisotropic, thin-walled box. The proposed model is an extension of the model proposed by Lemanski and Weaver for the evaluation of the bend-twist coupling constant.Methods:Bending and torsional stiffness are derived analytically by using physical reasoning and by applying bending and torsional stiffness mathematic definition. Unitary deformations have been applied when evaluation forces and moments arising on the cross section.Results:Good accuracy has been obtained for structures with different geometries and lay-ups. The model has been validated with respect to finite element analysis. Numerical results are commented upon and compared with other models presented in literature.Conclusion:For cross sections with a high level of anisotropy, the accuracy of the proposed formulation is within 2% for bending stiffness and 6% for torsional stiffness. The percentage of error is further reduced for more realistic geometries and lay-ups.The proposed formulation gives accurate results for different dimensions and length rations of horizontal and vertical walls.

Author(s):  
Eboreime Ohioma ◽  
Muhammad Ali ◽  
Khairul Alam

This study was conducted to investigate the effects of cross-sectional geometry on thin wall axial crushing members for the purpose of improved energy absorption. A total of five geometrically equivalent shapes (same wall thickness area, material, and length) were analyzed namely, triangle, rectangle, square, pentagon, and circle. The deformation modes and energy absorption of the members were studied under compressive loads and compared using ABAQUS/Explicit module, finite element analysis software. The simulations revealed that for the five geometrically equivalent cross sections under equal loading conditions, the pentagon shaped member absorbed the highest amount of energy. As compared to baseline rectangle member, the pentagon member absorbed approximately 25–28% more energy.


2014 ◽  
Vol 679 ◽  
pp. 1-5 ◽  
Author(s):  
Sumayah Abdulsalam Mustafa ◽  
Mohd Zulham Affandi bin Mohd Zahid ◽  
Md.Hadli bin Abu Hassan

Cross sectional areas optimization is to be implemented to study the influence of the cross section shape on the optimum truss weight. By the aid of analysis and design engines with advanced finite element analysis that is the steel design software STAAD. Four rolled steel sections (angle, tube, channel, and pipe) which are used in industrial roof trusses are applied for comparison. Many previous studies, use the areas of cross sections as design variables without highlight to the shape of cross section at the start of the process, consequently the result area will be adequate if the designer choose the effective shape than others. Results of this research show that the chosen cross section shape has a significant impact on the optimum truss weight for same geometry of truss type under the same circumstances of loading and supports.


1973 ◽  
Vol 15 (5) ◽  
pp. 351-356
Author(s):  
T. Harrison ◽  
J. M. Siddall

The torsional stiffness of a thin-walled beam of open cross-sectional profile braced by evenly spaced transverse diaphragms is studied. Diaphragms rigidly fixed or attached by frictionless pins are treated and it is seen that, in either case, the only effect is to modify the St Venant torsional constant for the thin-walled beam. The theoretical work is supported by experimental evidence from two braced perspex channels which simulate the two assumed methods of attaching the diaphragms. Good agreement is demonstrated.


2021 ◽  
Vol 15 (58) ◽  
pp. 77-85
Author(s):  
Amor Bouaricha ◽  
Naoual Handel ◽  
Aziza Boutouta ◽  
Sarah Djouimaa

In this experimental work, strength results obtained on short columns subjected to concentric loads are presented. The specimens used in the tests have made of cold-rolled, thin-walled steel. Twenty short columns of the same cross-section area and wall thickness have been tested as follows: 8 empty and 12 filled with ordinary concrete. In the aim to determine the column section geometry with the highest resistance, three different types of cross-sections have been compared: rectangular, I-shaped unreinforced and, reinforced with 100 mm spaced transversal links. The parameters studied are the specimen height and the cross-sectional steel geometry. The registered experimental results have been compared to the ultimate loads intended by Eurocode 3 for empty columns and by Eurocode 4 for compound columns. These results showed that a concrete-filled composite column had improved strength compared to the empty case. Among the three cross-section types, it has been found that I-section reinforced is the most resistant than the other two sections. Moreover, the load capacity and mode of failure have been influenced by the height of the column. Also, it had noted that the experimental strengths of the tested columns don’t agree well with the EC3 and EC4 results.


1970 ◽  
Vol 12 (2) ◽  
pp. 130-134 ◽  
Author(s):  
T. Harrison

Previous studies of the behaviour, in generalized co-ordinates, of thin-walled, prismatic beams of open cross-sectional profile have included, explicitly, only the effects of distributed transverse forces, q x and q y, distributed longitudinal forces, q z, and distributed torsional couples, m z. Using the principle of virtual displacements, the work of previous investigators is extended to include, quite generally, the effects of the hitherto neglected distributed couples, m x and m y. The derivation of the differential equation relating to the twisting of an open-section prismatic beam is presented fully whilst those relating to transverse and axial displacements of cross-sections are merely stated. The kinematic and static boundary conditions for a cantilever are also established from the virtual work equations. These show that the free-end shear boundary condition associated with transverse bending which is usually adopted in engineering calculations is inadequate for such a generalized loading system.


Author(s):  
Jiaqiang Li ◽  
Yao Chen ◽  
Xiaodong Feng ◽  
Jian Feng ◽  
Pooya Sareh

Origami structures have been widely used in various engineering fields due to their desirable properties such as geometric transformability and high specific energy absorption. Based on the Kresling origami pattern, this study proposes a type of thin-walled origami tube the structural configuration of which is found by a mixed-integer linear programming model. Using finite element analysis, a reasonable configuration of a thin-walled tube with the Kresling pattern is firstly analyzed. Then, the influences of different material properties, the rotation angle of the upper and lower sections of the tube unit, and cross-sectional shapes on the energy absorption behavior of the thin-walled tubes under axial compression are evaluated. The results show that the symmetric thin-walled tube with the Kresling pattern is a reasonable choice for energy absorption purposes. Compared with thin-walled prismatic tubes, the thin-walled tube with the Kresling pattern substantially reduces the initial peak force and the average crushing force, without significantly reducing its energy absorption capacity; moreover, it enters the plastic energy dissipation stage ahead of time, giving it a superior energy absorption performance. Besides, the material properties, rotation angle, and cross-sectional shape have considerable influences on its energy absorption performance. The results provide a basis for the application of the Kresling origami pattern in the design of thin-walled energy-absorbingstructures.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hui Liu ◽  
Jun Hu ◽  
Guohui Li ◽  
Guangying Mo

This paper presents a theoretical model, taking into account the shear deformation subjected to the influence of U-shaped member by geometric parameters as flange height based on thin-layer beam theory, to analyze the structural bending behavior of U-shaped member reinforced timber composite beams, and the feasible design forms of U-section have been pointed out. The algorithm for this composite beam is the most practical and effective method to meet the accurate solution. The formulas for the common forms of U-section are presented. It aims to develop a rational engineering approach. The proposed model has been validated by comparing the results obtained in the present analysis with experimental results and finite element analysis. Furthermore, the results suggested that the value of flange height can be one-fifth the beam height based on the present analysis by comparison of two types of beams. And it is shown that the model provided here correlates consistently and satisfactorily with a wide range of timber beams reinforced by a thin-walled structure such as steel or aluminum alloy sheet bonded to their tension faces.


2014 ◽  
Vol 3 (1) ◽  
pp. 50 ◽  
Author(s):  
N. J. Milardovich ◽  
L. Prevosto ◽  
M. A. Lara

A numerical investigation on the harmonic disturbances in low-voltage cables feeding large LED loads is reported. A frequency domain analysis on several commercially-available LEDs was performed to investigate the signature of the harmonic current injected into the power system. Four-core cables and four single-core cable arrangements (three phases and neutral) of small, medium, and large conductor cross sections, with the neutral conductor cross section approximately equal to the half of the phase conductors, were examined. The cables were modelled by using electromagnetic finite-element analysis software. High harmonic power losses (up to 2.5 times the value corresponding to an undistorted current of the same rms value of the first harmonic of the LED current) were found. A generalized ampacity model was employed for re-rating the cables. It was found that the cross section of the neutral conductor plays an important role in the derating of the cable ampacity due to the presence of a high-level of triplen harmonics in the distorted current. The ampacity of the cables should be derated by about 40 %, almost independent of the conductor cross sections. The calculation have shown that an incoming widespread use of LED lamps in lighting could create significant additional harmonic losses in the supplying low-voltage lines, and thus more severely harmonic emission limits should be defined for LED lamps.


2019 ◽  
Vol 10 (1) ◽  
pp. 299-307
Author(s):  
Jinyin Li ◽  
Peng Yan ◽  
Jianming Li

Abstract. This paper presents an improved modeling method for bridge-type mechanism by taking the input displacement loss into consideration, and establishes an amplification ratio model of bridge-type mechanism according to compliance matrix method and elastic beam theory. Moreover, the amplification ratio of the designed bridge-type nano-positioner is obtained by taking the guiding mechanism as the external load of bridge-type mechanism. Comparing with existing methods, the proposed model is more accurate, which is further verified by finite element analysis(FEA) and experimental test. The consistency of the results obtained from theoretical model, FEA and experimental testing indicates that the proposed model can accurately predict the amplification characteristics of nano-positioners, which helps the analysis and design of bridge-type nano-positioners in practical applications.


Sign in / Sign up

Export Citation Format

Share Document