Synthesis and characterisation of iron oxide (Fe3O4) ferrofluid nanoparticles coated by poly (vinyl butyral) with microsphere

2021 ◽  
Vol 13 ◽  
Author(s):  
Sharanabasava V. Ganachari ◽  
Nagaraj R. Banapurmath ◽  
Jayachandra S. Yaradoddi ◽  
Veerabhadragouda B. Patil ◽  
Akshata Yavagal ◽  
...  

Objective: Synthesis of magnetic nano Iron oxide (Fe3O4) ferrofluid nanoparticles using chemical methods and its characterization studies Method: Iron oxide (Fe3O4) ferrofluid nanoparticles is synthesized by using the chemical co-precipitation technique, ferric and ferrous salts in the alkaline medium, which is known as Reimer’s procedure. Results: Nano iron oxide (Fe3O4) particles have different magnetic properties and different magnetic moments, differentiating macroscopic iron oxide in suspended particles. The ratio of surface to volume increases along with the decrease in atomic size so that the surface properties are essential for using any nano-material. Prepared Fe3O4 nanoparticles were coated with oleic acid (C18H34O2) and polyvinyl butyral((C8H14O2)n), further characterized by Materials characterization techniques (SEM, XRD and FTIR). Magneto-rheological (MR) fluid has been one of the interesting studies the shear stress of PVB coated nano iron with microsphere has approximately the same as of PVB coated nano iron but shows very high shear stress withstanding capacity at 650 s-1 shear rates. Conclusion: The permanence of the magnetic colloidal depends on the thermal contribution and the balance between attractive and repulsive interactions.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sharanabasava V. Ganachari ◽  
Veerabhadragouda B. Patil ◽  
Nagaraj R. Banapurmath ◽  
Manzoore Elahi M. Soudagar ◽  
Kiran Shahapurkar ◽  
...  

The aim of the present work is the synthesis and characterization of iron oxide (Fe3O4) nanoparticles. These nanoparticles are coated with oleic acid and polyvinyl butyral and mixed with microspheres and further developed ferrofluids with silicon oil. Studies of the performance of the nanoparticles in these ferrofluids with and without coating agents were carried out. The nanoparticles were synthesized using the chemical co-precipitation technique and coated with oleic acid and polyvinyl butyral, and it further mixed with microsphere ferrofluids and developed using silicon oil. The prepared Fe3O4 nanoparticles and their coated forms of oleic acid and polyvinyl butyral were mixed with microspheres; furthermore, ferrofluids were developed with silicon oil. All forms of these ferrofluids are characterized for morphology and phase purity (SEM, XRD, and FTIR). The iron oxide (Fe3O4) nanoparticles have shown different magnetic properties, differentiating macroscopic iron oxide in suspended particles. The ratio of surface to volume increases along with the decrease in atomic size, essential for assessing the surface morphological properties. The magneto-rheological (MR) fluids were determined, and shear stress of Expancel microsphere mixed iron oxide nanoparticle with and without them was found almost equal. However, the ferrofluid with PVB coated nanoparticles and microspheres emerged as a stable rheological ferrofluid, sustaining high shear stress and low viscosity with increasing shear rate. Also, shear rates up to 650 s−1 have been observed, showing very high shear stress withstanding capacity. The stability and performance of the magnetic colloidal ferrofluids depend on the thermal contribution and the balance between attractive/repulsive interactions.


2021 ◽  
Vol 8 (1) ◽  
pp. C29-C37
Author(s):  
T. Javanbakht ◽  
S. Laurent ◽  
D. Stanicki ◽  
I. Salzmann

The present study focuses on the rheological properties of polyethylene glycol (PEG) modified, positively charged, and negatively charged superparamagnetic iron oxide nanoparticles (SPIONs) at different temperatures. We hypothesized that the surface properties of these nanoparticles in the water did not affect their rheological properties. These nanoparticles had not the same surface properties as SPIONs-PEG had not to charge on their surface whereas positively charged and negatively charged ones with amine and carboxyl groups as their surfaces had positive and negative surface charges, respectively. However, their rheological behaviors were not different from each other. The comparative rheological study of SPIONs revealed their pseudo-Newtonian behavior. The viscosity of SPIONs decreased with the increase in temperature. At low shear rates, the shear stress of SPIONs was independent of rate and increased with the increase of rate. Moreover, at high shear rates, the shear stress for PEG-SPIONs was more than those for positively charged and negatively charged SPIONs. These measurements also revealed that at high shear rates, the shear stress of samples decreased with the increase of temperature. The shear stress of samples decreased with the increase of shear strain and the temperature. We also observed that all the samples had the same amount of shear strain at each shear stress, which indicated the exact resistance of SPIONs to deformation. Furthermore, the shear modulus decreased with time for these nanoparticles. These results suggest that these nanoparticles are promising candidates with appropriate properties for fluid processing applications and drug vectors in biomedical applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Wang ◽  
Aixiang Wu ◽  
Lianfu Zhang ◽  
Hongjiang Wang ◽  
Fei Jin

Sedimentation of filling materials could cause pipe blocking accident in mines. However, few quantitative characterization studies have investigated the sedimentation characteristics of filling materials. In this study, the sedimentation property of iron tailings with a cement-sand ratio of 1 : 4 and mass concentration of 73%∼82% was investigated based on rheology measurements. Results showed that shear stress increased as shear rate rose from 0 s−1to 120 s−1. The shear stress increased as the filling material concentration increased as well. However, when the shear rate was reversed from 120 s−1to 0 s−1, the shear stress presented an increase-constant-decrease change pattern as the mass concentration increases in the rheological curve. Accordingly, the sedimentation performance of iron tailings filling material was divided into three types: intense sedimentation (the ascending rheological curve) in the mass concentration range of 73%∼76%, slight sedimentation (the constant rheological curve) in the mass concentration range of 77%∼79%, and almost no sedimentation (the descending rheological curve) in the mass concentration range of 80%∼82%. The associated mechanism involving slurry mass concentration-rheological curves-sedimentation performance was illustrated. A correlation between the pipeline rheology and filling material sedimentation performance was established, which provides a practical guide to avoid pipeline blocking while transporting the filling material.


2021 ◽  
Author(s):  
Ademola Balogun ◽  
Toyin Odutola ◽  
Yakubu Balogun

Abstract This research examines the use of 75nm Zinc Oxide nanoparticles (Nano ZnO) and Polyethylene Butene (PEB) in reducing the viscosity of Nigerian waxy crude oil. The rheology of the crude oil was studied by measuring the viscosity and shear stress of crude samples contaminated with varying concentration of PEB (500ppm, 1000ppm, 2000ppm, 3000ppm, 4000ppm and 5000ppm), varying concentrations of Nano ZnO (1wt%, 2wt%, 3wt% and 4wt%) and different blends of PEB and Nano ZnO at temperatures of between 10°C to 35°C and shear rates from 1.7 to 1020s-1. From Rheological Modelling analysis conducted, the Power law pseudoplastic model was the best fit for the experimental data with a regression coefficient of 0.99. Analysis of crude sample before addition of inhibitor showed evidence of non-Newtonian fluid behaviour as the shear stress-shear rate relationship curves were nonlinear due to wax precipitation at low temperatures (10°C to 15°C). The waxy crude demonstrated shear thinning behaviour with increasing shear rates (increasing turbulence) and the viscosity reduced with increasing temperature. The addition of inhibitors (PEB, Nano ZnO and their blends) effected Newtonian fluid behaviour in the crude samples as the shear stress-shear rate relationship curves were linear at all temperatures under study. The optimum concentration of the inhibitors in this study is 2000ppm PEB (causing 33% viscosity reduction) and 1wt% Nano ZnO (effecting 26% viscosity reduction). The best concentration of the blend was 2000ppm PEB blended with 1wt% Nano ZnO which effected a viscosity reduction of 41%. The research demonstrates the novel application of the blend of Nano ZnO and PEB in improving flowability of Nigerian waxy crude oil especially in offshore conditions with prevailing cold temperatures.


2021 ◽  
pp. 2150411
Author(s):  
Rania Hasan Huseen ◽  
Ali A. Taha ◽  
Ihab Q. Ali ◽  
Oday Mahmmod Abdulhusein ◽  
Selma M. H. Al-Jawad

In this study, iron oxide nanoparticles (NPs) had been prepared by co-precipitation method. In order to reduce their toxicity and increase stability, prepared iron oxide was coated with gum Arabic. Gum Arabic is preferred over synthetic materials due to their non-toxicity, low cost and availability. Characterization of coated and non-coated iron oxide NPs had been performed by spectrophotometer, Fourier transfer infra-red spectrophotometer (FTIR), Zeta potential, X-ray diffraction (XRD) and field emission scanning electron microscopic (FE-SEM). The fabricated nanoparticles appeared purity and crystalline nature by XRD, with diameter average of 27.01 nm and 55.12 nm for iron oxide NPs and iron oxide NPs coated with gum Arabic, respectively. On the other hand, four biological activities of coated and non-coated iron oxide had been investigated. High removal of methylene blue pollutant dye (46%) was observed with iron oxide NPs, while removal percentage was 22.6 performed by iron oxide NPs coated with gum Arabic within 72 h. Iron oxide NPs revealed high inhibition zones of 27.5 nm and 30 mm, at 1000 [Formula: see text]g/ml, against S. aureus and E. coli, respectively, while coated iron oxide NPs with gum Arabic revealed low antibacterial activity against both examined bacteria even when used at 1000 [Formula: see text]g/ml. The hemolytic activity of prepared NPs had been determined. The hemolytic percentage was increased whenever concentrations of nanoparticles increased. Lower hemolytic percentages were 69.76 and 50.98 for iron oxide NPs and iron oxide NPs coated with gum Arabic were observed at a concentration of 250 [Formula: see text]g/ml. Finally, cytotoxic activity was estimated against MCF-7 cell line and normal cell line WRL68 by MTT assay. A decrease in MCF-7 viability to 65.1% was observed when 400 [Formula: see text]g/ml of iron oxide NPs was used, while WRL68 viability was 75.03%. Iron oxide NPs coated with gum Arabic revealed significant reduction in MCF-7 and WRL68 viability to 69.90% and 80.05%, respectively, when 400 [Formula: see text]g/ml of nanoparticles was applied.


1964 ◽  
Vol 19 (1) ◽  
pp. 127-133 ◽  
Author(s):  
S. E. Charm ◽  
W. McComis ◽  
G. Kurland

A structural model developed for kaolin suspensions was applied to blood in order to determine the structure and strength of the red cell suspensions. The yield stress of red cell suspensions determined in settling experiments agreed with the yield stress determined from shear stress-shear rate information employing Casson's equation. Theoretical considerations indicate that the shear stress-shear rate curve for blood should approach a straight line. This was found to be true at shear rates above 40 sec-1. The slope of this line was predicted from calculations based on sedimentation experiments and a modified Einstein's equation. The data suggest that the curvature of the shear stress-shear rate plot at low shear rates is due to aggregates of cells which break down under increasing shear rate, resulting finally in individual flocs. It is suggested that a floc consists of one to four cells with adhering plasma. The aggregate was calculated to have twice as much plasma associated with it as does a floc. However, the size of the aggregate could not be determined since the number of flocs associated with an aggregate could not be determined. shear stress-shear rate curve; red cell floc; red cell aggregate; sedimentation rate; blood viscosity and flow Submitted on February 28, 1963


Sign in / Sign up

Export Citation Format

Share Document