Optimization of the Ratio of Sampling Rate to Quantization Level for the Reconstruction of Audio Signal

Author(s):  
Md. Salim Raza ◽  
Nahid Hasan ◽  
Sayed Tonmoy Ahamed ◽  
Kazi Ghulam Mostafa ◽  
Mohammad Rabiul Alam

Background and Objective: In this research work, the basic digital communication system with frequency shift keying modulation technique has been implemented in MATLAB. Methods: The same sinusoidal signal in audio frequency range has been transmitted and reconstructed with the different number of quantization level and sampling rate, where sampling frequency has been taken according to the Nyquist theorem. It has been seen that reconstructed signal at low data rate has appeared with better resolution compared with the reconstructed signal at the high data rate. Results and Conclusion: In this regard, it is evident that the resolution of a reconstructed signal not only depends on data rate but it also depends on the ratio of sampling rate to quantization level. So it is required to optimize the ratio of sampling rate to quantization level before transmitting audio signal.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Pankaj Singh ◽  
Byung-Wook Kim ◽  
Sung-Yoon Jung

Terahertz (THz) band (0.1-10 THz)-based electromagnetic communications are envisioned as a key technology to enable future high-data-rate short-range ultrabroadband communications. However, one of the fundamental bottlenecks is the efficiency of the analog-to-digital converters (ADCs) considering the formidable challenge of sampling the signal at the Nyquist rate eventually increasing transceiver design complexity. The Compressed sensing (CS) framework enables the successful reconstruction of sparse signals from a small set of projections onto a random vector which would lead to sub-Nyquist rate sampling. In this paper, THz band channel estimation based on the theory of CS is developed. The proposed approach exploits the fact that transmitting an ultrashort pulse through a multipath THz channel leads to a received THz signal that can be approximated by a linear combination of a few atoms from a predefined dictionary, yielding thus a sparse representation of the received signal. The fundamental idea is in the design of the dictionary of atoms that closely matches the transmitted pulse leading thus to a higher probability of CS reconstruction. The Orthogonal Matching Pursuit (OMP) algorithm is used to identify the strongest atoms in the projected signal. This reconstructed signal is subsequently used as a reference template in a correlator-based detector. The bit error rate (BER) performance of the proposed detector is analyzed and compared with the conventional CS-based channel estimation and reconstruction approach. Extensive simulations show that, for different design parameters, our proposed detector outperforms the traditional CS-based correlator receiver for the same sampling rate leading thus to a much-reduced use of analog-to-digital resources. Moreover, the proposed detector has been shown to reduce the hardware complexity of the receiver by significantly reducing the number of parallel mixer-integration branches.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5803
Author(s):  
Na Zhao ◽  
Qing Chang ◽  
Hao Wang ◽  
Zhibo Zhang

The spacecraft tracking telemetering and command (TT&C) system plays an essential role in celestial and terrestrial networks, requiring relative ranging and communication, particularly in satellite formation flying networks and distributed spacecraft networks. To achieve precious ranging and high-data-rate communication in a Master/Slave satellite architecture, an integrated communication-ranging system (ICRS) is introduced. ICRS is based on the inter-satellite spread spectrum ranging and spread/non-spread spectrum communication modulated by unbalanced quadrature phase shift keying (UQPSK). In both uplink and downlink, the in-phase (I) branches and the quadrature (Q) branches undertake the tasks of ranging and communication, respectively. In addition, a global navigation satellite system (GNSS) like signal is adopted in I branches for the sake of better ranging accuracy, and binary phase shift keying (BPSK) modulation is employed in Q branches for a higher data rate. Therefore, the key point of the ICRS design is the power resource allocation between two branches via the selection of a suitable power distribution factor (PWDF). Simulation results demonstrate the good performance of the proposed approach in ranging error and bit error rate (BER). In addition, a reasonable PWDF is recommended. Furthermore, the influence of clock offset is also taken into consideration.


Author(s):  
Fatima Faydhe Al-Azzwi ◽  
Ruaa Ali Khamees ◽  
Zina Abdul Lateef ◽  
Batool Faydhe Al-Azzawi

<p>The next generation for mobile communication is new radio (NR) that supporting air interface which referred to the fifth generation or 5G. Long term evolution (LTE), universal mobile telecommunications system (UMTS), and global system for mobile communication (GSM) are 5G NR predecessors, also referred to as fourth generation (4G), third generation (3G) and second generation (2G) technologies. Pseudo-noise (PN) code length and modulation technique used in the 5G technology affect the output spectrum and the payload of DL-FRC specification, in this paper quadrature phase shift keying (QPSK), 16 QAM modulation approaches tested under additive white Gaussian noise (AWGN) in term of bit error rate (BER) which used with 5G technology system implemented with MATLAB-Simulink and programing and, resulting of 1672, 12296 bit/slot payload at frequency range FR1 from 450 MHz-6 GHz and 4424, 20496 bit/slot payload at frequency range FR2 from 24.25 GHz-52.6 GHz, also determining subcarrier spacing, allocated source block, duplex mode, payload bit/slot, RBW (KHz), sampling rate (MHz), the gain and the bandwidth of main, side loop where illustrated.</p>


Author(s):  
Saib Thiab Alwan

In this paper, carrier’s generation-based graphene with applicability for wavelength division multiplexing (WDM) systems have been produced via an illumination of graphene by 980 nm. This technique allowed for servicing of a greater number of channels in a WDM system, and the carriers were able to travel in an optical channel with high data rate. Eight carriers, having a frequency spacing (FS) of 25 GHz and full-width at half-maximum (FWHM) of 500 MHz, were created. These generated carriers were separately modulated with eight optical quadrature phase shift keying (QPSK) signals and subsequently optically multiplexed and transmitted to an optical fiber channel. At the receiver side, the received signal was demultiplexed, and the performance of the system was analyzed via calculating the error vector magnitude and constellation diagram of the entire system. Opti System version 17.1 and Matlab software are used for demonstration of WDM system and carrier generation.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Paramjot Singh ◽  
Himali Sarangal ◽  
Simrandeep Singh Thapar

Abstract In order to achieve large capacity inter-satellite communication, optical wireless communication (OWC) is emerging as a promising area of research amongst the academic and research groups. While radio over fiber (ROF) and advanced modulation technique is considered to be a key enabling technology in the development of OWC based access networks for high-speed data transmission. This paper has proposed a novel ROF based system model using OWC for long haul high data rate applications. This system is designed using differential quadrature phase shift keying (DQPSK) through inter-satellite optical wireless communication (IsOWC) channel. The verification of the performance is performed at bit rates of 100 and 200 Gbps over a space distance range up to 1000 to 50000 km under different transmitted power. The simulative investigation has been carried out in terms of important parameters like BER, Q-factor and eye diagrams.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450062 ◽  
Author(s):  
SAAD MUTASHAR ◽  
M. A. HANNAN ◽  
S. A. SAMAD ◽  
A. HUSSAIN

This paper deals with the development of bio-implanted micro-system with low-power and high data rate based on amplitude shift keying (ASK) modulation technique to stimulate nerves and muscles. The modified system is operated by a low-frequency band 13.56 MHz according to the industrial-scientific-medical (ISM) bands to avoid the biological tissue damage. The data rate on the demodulator side is from 1 Mb/s and up to 1.5 Mb/s depending of generating binary signal (T BIT = 1 μs or 0.5 μs) with modulation index of 13% and modulation rate 7.3%, 9% and 11%, respectively. The proposed inductive coupling link achieves 73% of link efficiency. The modified rectifier with self-threshold voltage cancellation techniques and voltage regulator without thermal protection circuit and without passive elements occupies small area that is modified to generate adequate and stable DC voltages of 1.8 V. A new ASK demodulator structure based on two comparators is developed to extract a synchronized demodulated signal with minimum error. Thereby no need for clock recovery circuit and delay-locked loops (DLL) circuits for data synchronization at 1 Mb/s and 1.250 Mb/s of speed. The system designed using OrCAD Pspice 16.2 is based on 0.35 μm technologies.


Sign in / Sign up

Export Citation Format

Share Document