Nanoparticles and Vaccine Development

2020 ◽  
Vol 8 (1) ◽  
pp. 6-21 ◽  
Author(s):  
Mehdi kheirollahpour ◽  
Mohsen Mehrabi ◽  
Naser Mohammadpour Dounighi ◽  
Mohsen Mohammadi ◽  
Alireza Masoudi

In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses. The use of nanoparticles in vaccine formulations allows not only enhanced immunogenicity and stability of antigen, but also targeted delivery and slow release. Over the past decade, nanoscale size materials such as virus-like particles, liposomes, ISCOMs, polymeric, inorganic nanoparticles and emulsions have gained attention as potential delivery vehicles for vaccine antigens, which can both stabilize vaccine antigens and act as adjuvants. This advantage is attributable to the nanoscale particle size, which facilitates uptake by Antigen- Presenting Cells (APCs), then leading to efficient antigen recognition and presentation. Modifying the surfaces of nanoparticles with different targeting moieties permits the delivery of antigens to specific receptors on the cell surface, thereby stimulating selective and specific immune responses. This review provides an overview of recent advances in nanovaccinology.

2018 ◽  
Vol 9 ◽  
Author(s):  
Julien Cachat ◽  
Christine Deffert ◽  
Marco Alessandrini ◽  
Pascale Roux-Lombard ◽  
Audrey Le Gouellec ◽  
...  

2000 ◽  
Vol 68 (9) ◽  
pp. 5306-5313 ◽  
Author(s):  
Tanya Scharton-Kersten ◽  
Jian-mei Yu ◽  
Russell Vassell ◽  
Derek O'Hagan ◽  
Carl R. Alving ◽  
...  

ABSTRACT We have recently described a needle-free method of vaccination, transcutaneous immunization, consisting of the topical application of vaccine antigens to intact skin. While most proteins themselves are poor immunogens on the skin, we have shown that the addition of cholera toxin (CT), a mucosal adjuvant, results in cellular and humoral immune responses to the adjuvant and coadministered antigens. The present study explores the breadth of adjuvants that have activity on the skin, using diphtheria toxoid (DTx) and tetanus toxoid as model antigens. Heat-labile enterotoxin (LT) displayed adjuvant properties similar to those of CT when used on the skin and induced protective immune responses against tetanus toxin challenge when applied topically at doses as low as 1 μg. Interestingly, enterotoxin derivatives LTR192G, LTK63, and LTR72 and the recombinant CT B subunit also exhibited adjuvant properties on the skin. Consistent with the latter finding, non-ADP-ribosylating exotoxins, including an oligonucleotide DNA sequence, as well as several cytokines (interleukin-1β [IL-1β] fragment, IL-2, IL-12, and tumor necrosis factor alpha) and lipopolysaccharide also elicited detectable anti-DTx immunoglobulin G titers in the immunized mice. These results indicate that enhancement of the immune response to topical immunization is not restricted to CT or the ADP-ribosylating exotoxins as adjuvants. This study also reinforces earlier findings that addition of an adjuvant is important for the induction of robust immune responses to vaccine antigens delivered by topical application.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seyed Davoud Jazayeri ◽  
Hui Xuan Lim ◽  
Kamyar Shameli ◽  
Swee Keong Yeap ◽  
Chit Laa Poh

Mucosal surfaces are the first site of infection for most infectious diseases and oral vaccination can provide protection as the first line of defense. Unlike systemic administration, oral immunization can stimulate cellular and humoral immune responses at both systemic and mucosal levels to induce broad-spectrum and long-lasting immunity. Therefore, to design a successful vaccine, it is essential to stimulate the mucosal as well as systemic immune responses. Successful oral vaccines need to overcome the harsh gastrointestinal environment such as the extremely low pH, proteolytic enzymes, bile salts as well as low permeability and the low immunogenicity of vaccines. In recent years, several delivery systems and adjuvants have been developed for improving oral vaccine delivery and immunogenicity. Formulation of vaccines with nanoparticles and microparticles have been shown to improve antigen stability, availability and adjuvanticity as well as immunostimulatory capacity, target delivery and specific release. This review discusses how nanoparticles (NPs) and microparticles (MPs) as oral carriers with adjuvant characteristics can be beneficial in oral vaccine development.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Karnail Singh ◽  
Bishal Marasini ◽  
Xuemin Chen ◽  
Lingmei Ding ◽  
Jaang-Jiun Wang ◽  
...  

ABSTRACT The 2013–2016 Ebola outbreak in West Africa led to accelerated efforts to develop vaccines against these highly virulent viruses. A live, recombinant vesicular stomatitis virus-based vaccine has been deployed in outbreak settings and appears highly effective. Vaccines based on replication-deficient adenovirus vectors either alone or in combination with a multivalent modified vaccinia Ankara (MVA) Ebola vaccine also appear promising and are progressing in clinical evaluation. However, the ability of current live vector-based approaches to protect against multiple pathogenic species of Ebola is not yet established, and eliciting durable responses may require additional booster vaccinations. Here, we report the development of a bivalent, spherical Ebola virus-like particle (VLP) vaccine that incorporates glycoproteins (GPs) from Zaire Ebola virus (EBOV) and Sudan Ebola virus (SUDV) and is designed to extend the breadth of immunity beyond EBOV. Immunization of rabbits with bivalent Ebola VLPs produced antibodies that neutralized all four pathogenic species of Ebola viruses and elicited antibody-dependent cell-mediated cytotoxicity (ADCC) responses against EBOV and SUDV. Vaccination of rhesus macaques with bivalent VLPs generated strong humoral immune responses, including high titers of binding, as well as neutralizing antibodies and ADCC responses. VLP vaccination led to a significant increase in the frequency of Ebola GP-specific CD4 and CD8 T cell responses. These results demonstrate that a novel bivalent Ebola VLP vaccine elicits strong humoral and cellular immune responses against pathogenic Ebola viruses and support further evaluation of this approach as a potential addition to Ebola vaccine development efforts. IMPORTANCE Ebola outbreaks result in significant morbidity and mortality in affected countries. Although several leading candidate Ebola vaccines have been developed and advanced in clinical testing, additional vaccine candidates may be needed to provide protection against different Ebola species and to extend the durability of protection. A novel approach demonstrated here is to express two genetically diverse glycoproteins on a spherical core, generating a vaccine that can broaden immune responses against known pathogenic Ebola viruses. This approach provides a new method to broaden and potentially extend protective immune responses against Ebola viruses.


2019 ◽  
Vol 24 (32) ◽  
pp. 3791-3817 ◽  
Author(s):  
Satyavani Kaliamurthi ◽  
Gurudeeban Selvaraj ◽  
Muhammad Junaid ◽  
Abbas Khan ◽  
Keren Gu ◽  
...  

Cancer immunoinformatics have led to new directions towards vaccine design from predicted potential epitope candidates, which are able to stimulate the correct cellular or humoral immune responses. They were employed to accomplish an advanced vaccine design through reverse vaccinology by replacing the whole organisms. In this review, computational tools play an essential role in evaluating multiple proteomes to identify and select the potential targeted epitopes or combinations of distinct epitopes, so that candidates may afford a rationale design competent for obtaining suitable cytotoxic T lymphocytes (CTL) or B cell-mediated immune responses. This review is a complete collection of the most beneficial online and user-friendly immunological tools, servers, and databases for the design and development of the peptide vaccine. The mechanism of major histocompatability (MHC)-restricted peptide presentation and how these tools support the vaccine development are also presented. The human papillomavirus (HPV) is taken as a model microbial strain for peptide vaccine design and its sensitization against HPV-induced cervical cancer is discussed.


Gene Therapy ◽  
2009 ◽  
Vol 17 (2) ◽  
pp. 288-293 ◽  
Author(s):  
Y Feng ◽  
F Jacobs ◽  
E Van Craeyveld ◽  
J Lievens ◽  
J Snoeys ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Yannick Galipeau ◽  
Matthew Greig ◽  
George Liu ◽  
Matt Driedger ◽  
Marc-André Langlois

In December 2019, the novel betacoronavirus Severe Acute Respiratory Disease Coronavirus 2 (SARS-CoV-2) was first detected in Wuhan, China. SARS-CoV-2 has since become a pandemic virus resulting in hundreds of thousands of deaths and deep socioeconomic implications worldwide. In recent months, efforts have been directed towards detecting, tracking, and better understanding human humoral responses to SARS-CoV-2 infection. It has become critical to develop robust and reliable serological assays to characterize the abundance, neutralization efficiency, and duration of antibodies in virus-exposed individuals. Here we review the latest knowledge on humoral immune responses to SARS-CoV-2 infection, along with the benefits and limitations of currently available commercial and laboratory-based serological assays. We also highlight important serological considerations, such as antibody expression levels, stability and neutralization dynamics, as well as cross-reactivity and possible immunological back-boosting by seasonal coronaviruses. The ability to accurately detect, measure and characterize the various antibodies specific to SARS-CoV-2 is necessary for vaccine development, manage risk and exposure for healthcare and at-risk workers, and for monitoring reinfections with genetic variants and new strains of the virus. Having a thorough understanding of the benefits and cautions of standardized serological testing at a community level remains critically important in the design and implementation of future vaccination campaigns, epidemiological models of immunity, and public health measures that rely heavily on up-to-date knowledge of transmission dynamics.


2020 ◽  
Vol 95 (2) ◽  
pp. e01193-20
Author(s):  
Santhi Devasundaram ◽  
Margherita Rosati ◽  
Antonio Valentin ◽  
Svenja Weiss ◽  
Vincenza Itri ◽  
...  

ABSTRACTThe RV144 vaccine trial revealed a correlation between reduced risk of HIV infection and the level of nonneutralizing-antibody (Ab) responses targeting specific epitopes in the second variable domain (V2) of the HIV gp120 envelope (Env) protein, suggesting this region as a target for vaccine development. To favor induction of V2-specific Abs, we developed a vaccine regimen that included priming with DNA expressing an HIV V1V2 trimeric scaffold immunogen followed by booster immunizations with a combination of DNA and protein in rhesus macaques. Priming vaccination with DNA expressing the HIV recombinant subtype CRF01_AE V1V2 scaffold induced higher and broader V2-specific Ab responses than vaccination with DNA expressing CRF01_AE gp145 Env. Abs recognizing the V2 peptide that was reported as a critical target in RV144 developed only after the priming immunization with V1V2 DNA. The V2-specific Abs showed several nonneutralizing Fc-mediated functions, including ADCP and C1q binding. Importantly, robust V2-specific Abs were maintained upon boosting with gp145 DNA and gp120 protein coimmunization. In conclusion, priming with DNA expressing the trimeric V1V2 scaffold alters the hierarchy of humoral immune responses to V2 region epitopes, providing a method for more efficient induction and maintenance of V2-specific Env Abs associated with reduced risk of HIV infection.IMPORTANCE The aim of this work was to design and test a vaccine regimen focusing the immune response on targets associated with infection prevention. We demonstrated that priming with a DNA vaccine expressing only the HIV Env V1V2 region induces Ab responses targeting the critical region in V2 associated with protection. This work shows that V1V2 scaffold DNA priming immunization provides a method to focus immune responses to the desired target region, in the absence of immune interference by other epitopes. This induced immune responses with improved recognition of epitopes important for protective immunity, namely, V2-specific humoral immune responses inversely correlating with HIV risk of infection in the RV144 trial.


2020 ◽  
Vol 223 (1) ◽  
pp. 56-61 ◽  
Author(s):  
Lisa Henss ◽  
Tatjana Scholz ◽  
Christine von Rhein ◽  
Imke Wieters ◽  
Frauke Borgans ◽  
...  

Abstract Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and hundreds of thousands of deaths. The infection causes coronavirus disease 2019 (COVID-19), a disease of the respiratory system of divergent severity. In the current study, humoral immune responses were characterized in a cohort of 143 patients with COVID-19 from the University Hospital Frankfurt am Main, Germany. Methods SARS-CoV-2-specific–antibodies were detected by enzyme-linked immunosorbent assay (ELISA). SARS-CoV-2 and human coronavirus NL63 neutralization activity was analyzed with pseudotyped lentiviral vectors. Results The severity of COVID-19 increased with age, and male patients encountered more serious symptoms than female patients. Disease severity was correlated with the amount of SARS-CoV-2–specific immunoglobulin (Ig) G and IgA and the neutralization activity of the antibodies. The amount of SARS-CoV-2–specific IgG antibodies decreased with time after polymerase chain reaction conformation of the infection, and antibodies directed against the nucleoprotein waned faster than spike protein-directed antibodies. In contrast, for the common flu coronavirus NL63, COVID-19 disease severity seemed to be correlated with low NL63-neutralizing activities, suggesting the possibility of cross-reactive protection. Conclusion The results describe the humoral immune responses against SARS-CoV-2 and might aid the identification of correlates of protection needed for vaccine development.


Sign in / Sign up

Export Citation Format

Share Document