scholarly journals Investigation of the Orientational Mechanical Properties of Biodegradable Extrusion Films Based on Polyolefins and Beet Pulp

2022 ◽  
Author(s):  
A.M. Kuzmin

Abstract. The article discusses the possibility of obtaining biodegradable films based on polyolefins and beet pulp by the extrusion method. Biodegradable composites of two mixes with 15% and 25% beet pulp content have been obtained. Compounding was carried out on a twin-screw extruder, and then samples of biodegradable films were obtained by cast film extrusion. The influence of the vegetable filler particles’ orientation on the composites mechanical properties has been studied. It has been shown that composites mechanical properties significantly increase in the direction of polymer melt stretching.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


2015 ◽  
Vol 1119 ◽  
pp. 283-287
Author(s):  
Sarit Liprapan ◽  
Thumnoon Nhujak ◽  
Pranut Potiyaraj

The objective of this study is to prepare α-cellulose reinforced poly (butylene succinate) composites (PBS/α-cellulose). The effect of amount α-cellulose on the mechanical properties of the composites was investigated. To improve interfacial interaction between PBS and α-cellulose, glycidyl methacrylate grafted poly (butylene succinate) (PBS-g-GMA) was used as a compatibilizer. Mechanical properties of PBS composites prepared by using a twin-screw extruder were investigated. The mechanical properties of PBS/α-cellulose decreased due to the agglomeration of α-cellulose. Nevertheless, tensile strength, Young’s modulus and flexural strength of PBS composites were improved after the incorporation of PBS-g-GMA. The optimum loading of PBS-g-GMA and α-cellulose in the PBS was found to be 5 and 6 phr.


2013 ◽  
Vol 561 ◽  
pp. 326-330
Author(s):  
Lei Guo ◽  
Qing Kun Liu ◽  
Chuan Sheng Wang

This paper uses a new twin-screw extruder for regeneration of waste tire crumb rubber, discusses the influence of screw speed and reaction temperature on the physical and mechanical properties of reclaimed rubber. Experimental results show that different screw speed and reaction temperature has a great impact on the physical and mechanical properties of the reclaimed rubber. When controls screw speed in the 60 ~ 90 r / min, reaction temperature at 170 to 210°C,the regeneration effect is the best. At this time, the physical and mechanical properties of reclaimed rubber, such as tensile strength, tear strength and elongation at break rate, is the best.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kittithorn Lertphirun ◽  
Kawee Srikulkit

Hydrophobic cellulose/SiO2 composites were prepared. Resultant hydrophobic cellulose/SiO2 composites were melt mixed with PLA using a twin-screw extruder to obtain 10 wt% masterbatch. Again, 10 wt% masterbatch was melt mixed with virgin PLA, resulting in PLA containing hydrophobic cellulose/SiO2 at various contents (1 wt%, 3 wt%, and 5 wt%) using a twin-screw extruder (barrel zone temperature: 150/160/170/180/190°C (die zone)). Injection-molded samples were prepared for mechanical properties evaluation. Results showed that poor mechanical properties found at low percent loadings were associated with a significant depolymerization of masterbatch composition due to twice thermal treatments. Note that 10 wt% masterbatch was subjected to injection molding straight away in a one-step process. Results showed that 10 wt% hydrophobic cellulose/SiO2/PLA composites exhibited mechanical properties equivalent to neat PLA. Importantly, the addition of hydrophobic cellulose/SiO2 at high percent loading could favor landfill degradation of PLA via water absorption ability of cellulose. It was expected that enzymatic hydrolysis of cellulose resulted in the formation of lactic acid and silicic acid which consequently catalyzed the hydrolytic degradation (acid hydrolysis) of PLA. The hydrolytic degradation produced carboxylic acid end group which further accelerated the degradation rate.


2017 ◽  
Author(s):  
M. F. De Almeida ◽  
Aldina Correia ◽  
Eliana Costa e Silva ◽  
I. Cristina Lopes

2011 ◽  
Vol 322 ◽  
pp. 394-397 ◽  
Author(s):  
Lan Fang Guan ◽  
Jin Zhou Chen

This paper mainly researched how polyfunctional monomers affect the Compatibilization of PP/TPU blends. With triallylisocyanurate (TAIC) and trimethylolpropane triacrylate (TMPTA) which belong to polyfunctional monomers as compatibilizers, various PP/TPU blends were prepared via melt mixing by using a twin-screw extruder. It is investigated that the effect of polyfunctional monomer on the mechanical properties, morphology and melt flowing behavior of the blends. The results show that the compatibility of PP/TPU is improved by adding moderate TAIC or TMPTA, and the compatibilization effect of TMPTA is superior to TAIC, especially when the content of monomers is 3 phr.


Sign in / Sign up

Export Citation Format

Share Document