scholarly journals Low-frequency dispersion behavior of impedance spectra of Li0.867Nb0.988Ni0.098O3 ceramic

2001 ◽  
Vol 674 ◽  
Author(s):  
M.I. Rosales ◽  
H. Montiel ◽  
R. Valenzuela

ABSTRACTAn investigation of the frequency behavior of polycrystalline ferrites is presented. It is shown that the low frequency dispersion (f < 10 MHz) of permeability is associated with the bulging of pinned domain walls, and has a mixed resonance-relaxation character, closer to the latter. It is also shown that there is a linear relationship between the magnetocrystalline anisotropy constant, K1, and the relaxation frequency. The slope of this correlation depends on the grain size. Such a relationship could allow the determination of this basic parameter from polycrystalline samples.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750134 ◽  
Author(s):  
Oktay Samadov ◽  
Oktay Alakbarov ◽  
Arzu Najafov ◽  
Samir Samadov ◽  
Nizami Mehdiyev ◽  
...  

The dielectric and impedance spectra of TlGaSe2 crystals have been studied at temperatures in the 100–500 K range in the alternating current (AC [Formula: see text]1 V). It has been shown that the conductivity of TlGaSe2 crystals is mainly an ionic characteristic at temperatures above 400 K. The well-defined peak at the frequency dependence of the imaginary part of impedance [Formula: see text] is observed in the 215–500 K temperature range. In a constant field, there occurs a significant decrease in electrical conductivity [Formula: see text] in due course. The ionic contribution to conductivity (76% at [Formula: see text]) has been estimated from a kinetic change in electrical conductivity [Formula: see text] under the influence of a constant electric field. The diagram analysis in a complex plane [Formula: see text] has been conducted by applying the method of an equivalent circuit of the substation. It has been determined that the average relaxation time of the electric module of the sample is [Formula: see text].


1992 ◽  
Vol 135 (1) ◽  
pp. 39-48 ◽  
Author(s):  
X. H. Dai ◽  
Z. Li ◽  
X. Z. Xu ◽  
S-K. Chan ◽  
D. J. Lam

1988 ◽  
Vol 23 (2) ◽  
pp. 209-213 ◽  
Author(s):  
A.K. Jonscher ◽  
L. Levesque

2002 ◽  
Vol 67 (6) ◽  
pp. 425-436 ◽  
Author(s):  
Houy Ma ◽  
Shenhao Chen ◽  
Chao Yang ◽  
Jingli Luo

The effect of nitrate ions on the electrochemical behaviour of iron (ferrite) and two carbon steels (martensite and pearlite) in sulphate solutions of different pH values was investigated by cyclic voltammetry polarization and electrochemical impedance spectroscopy. The pitting inhibiting effect of nitrate ions on ferrite in sulphate media is pH dependent. Nitrate ions were unable to inhibit the pitting on ferrite in neutral sulphate solutions, but did effectively protect passivated ferrite from pitting in acidic sulphate solutions. No pitting occurred on the surface of the martensite and pearlite specimens in sulphate solutions regardless of the pH of the solutions. At the open-circuit corrosion potentials, the three materials underwent general corrosion. The impedance spectra for the three materials measured in neutral sulphate solutions containing nitrates and chlorides at the corrosion potentials all showed a capacitive loop, while in acidic sulphate solutions their impedance spectra were greatly reduced in size and displayed at least a low frequency impedance loop (inductive or capacitive loop) besides the well-known high frequency capacitive loop. The variation of the impedance behaviour with pH is explained.


2021 ◽  
Author(s):  
◽  
Michael Charles Harold McKubre

<p>Work is reported on the development of a high precision, low frequency impedance bridge, and the use of impedance measurement in characterising the induced polarisation effect of unmineralised material. Impedance spectra for a variety of laboratory model clay/rock/electrolyte systems are analysed in terms of an equivalent circuit. By measuring the dependence of the parameters of this circuit, on such variables as electrolyte type and concentration, temperature and pore geometry, an electrochemical model for membrane polarisation has been developed. Polarisation is considered to arise from diffusional limitation of cations at the membrane/electrolyte interface of clay aggregations in rock pores, and this is found to be amenable to a Warburg diffusional impedance analysis.</p>


2002 ◽  
Vol 12 (9) ◽  
pp. 149-152
Author(s):  
S. Brazovskii

Recently the ferroelectric FE anomaly (Nad, Monceau, et al.) followed by the charge disproportionation CD (Brown, et al) have been discovered in ($TMTTF)_2X$ compounds. A theory of the combined Mott-Hubbard state describes both effects by interference of the build-in nonequivalence of bonds and the spontaneous one of sites. The state gives rise to three types of solitons: $\pi -$ solitons (holons) are observed via the activation energy A in conductivity G; noninteger $\alpha -$ solitons provide the frequency dispersion of the FE response; combined spin-charge solitons determine $G(T)$ below subsequent phase transitions. The optical edge lies well below the conductivity gap 2A; the critical FE mode coexists with a combined electron-phonon resonance and a phonon antiresonance. The CD and the FE can exists hiddenly even in the Se subfamily giving rise to the unexplained yet low frequency optical peak, the enhanced pseudogap and traces of phonons activation.


2018 ◽  
Vol 4 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Viviane S. Teixeira ◽  
Jan-Patrick Kalckhoff ◽  
Wolfgang Krautschneider ◽  
Dietmar Schroeder

AbstractIn this work, Bioimpedance Spectroscopy (BIS) is used to study fluids and cell solutions. A n ew fourelectrode- terminal (4T) chamber using 3D printing and stainless steel corrosion resistant V4A was designed to measure the impedance of live cell solutions at the frequency range 0.1Hz- 1MHz. At f < 1kHz the double layer (DL) that builds at electrode’s surface raises the impedance substantially preventing the observation of the real impedance of the cells. The new 4T design circumvents the DL, is more robust and cheap, and allows for the repeatability of the results. Experiments were performed in vitro with two cell lines, L929 (mouse fibroblasts) and HaCaT (human keratinocytes). Results show that it is possible to distinguish between the two cell types by means of its BIS measurements in the new setup. Also, a low-frequency dispersion (α-dispersion) was observed in HaCaT cells solution, but not in L929. Furthermore, a potentiostat circuit model was developed in LTSpice to simulate the hardware setup and two different circuit models were used to fit cell’s data.


Sign in / Sign up

Export Citation Format

Share Document