Calculation of Residual Life for P91 Material Based on Creep Rate and Time to Rupture

Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Hideaki Kushima

Creep deformation property of Grade T91 steels over a range of temperatures from 550 to 625°C was analyzed by means of the empirical creep equation reported in the previous study [1]. The creep equation consists of four time dependent terms and one constant and time to rupture is estimated as a time to total strain of 10%. Accuracy of the creep equation to represent creep curve and to predict time to rupture and minimum creep rate was indicated. Times to minimum creep rate, total strain of 1%, initiation of tertiary creep and rupture were evaluated by the creep equation. Stress dependence of strains at minimum creep rate and the initiation of tertiary creep were analyzed. Contribution of four time dependent terms to the strains at minimum creep rate, total strain of 1% and initiation of tertiary creep was investigated. Three parameters to determine a temperature and time-dependent stress intensity limit, St, were compared and a dominant factor of St was examined. Heat-to-heat variation of the creep deformation property was investigated on two heats of T91 steels contain low and high nickel concentrations.


Author(s):  
Lorenzo Scano ◽  
Luca Esposito

A sound material constitutive equation is crucial for the residual life evaluation of pressure components operating in the creep range. In a previous work [1], the authors investigated how a secondary creep formulation encompassing both the dislocational and the diffusional range influences the assessment of damage according to API 579-1 [2] within the whole component stress range. In the present paper the work has been extended in order to include the effects of primary creep in the constitutive equation for the ASTM A335 P22 low-alloy steel used for the manufacturing of the HRSG header whose welded details were previously investigated. The creep damage was first calculated according to API 579-1 Section 10 via inelastic, time-dependent FEA and the Larson-Miller approach (LMP) with code-defined, minimum time-to-rupture data. This led to a first reckoning of the primary creep impact in terms of API 579-1 residual life for the components under evaluation. The API 579-1 time-to-rupture was then assessed with a detailed stress analysis implementing the Omega Method and its creep strain rate formulation. The obtained results were finally compared to those previously determined through the LMP procedure and the different creep correlations (secondary and primary+secondary).


1981 ◽  
Vol 103 (3) ◽  
pp. 253-260 ◽  
Author(s):  
M. G. Cowgill ◽  
K. C. Thomas

The in-air creep-rupture properties of SA-516 (Grade 55) steel have been investigated in the temperature range 426–872°C (800–1600°F). The rupture time and creep rate data have been correlated using the Larson-Miller method, and relationships have been developed between the time to onset of tertiary creep and the time to rupture. Interpretation of the data involved consideration of the microstructural changes above and below the eutectoid temperature, and in which decarburization was an important factor.


1969 ◽  
Vol 91 (1) ◽  
pp. 59-62 ◽  
Author(s):  
M. Grounes

Various phenomenological equations for the dependence of the time-to-rupture, etc., on temperature and stress have been related to a generalized equation based on chemical reaction-rate theory. In the derivation of these equations the assumption, which has been used and criticized in earlier work, that the time-to-rupture is inversely proportional to the creep rate and thus that the ductility is constant, is not needed.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada

Abstract Creep deformation behavior, creep strength property and microstructural evolution during creep exposure were investigated on Super 304H steel for boiler tube. In the high stress and lower temperature regime, creep rupture strength of Super 304H steel is higher than that of SUS304H steel. The slope of stress vs. time to rupture curve of Super 304H steel, however, becomes steeper with increases in creep exposure time and temperature, and the creep rupture strength of Super 304H steel becomes closer to that of SUS304H steel after the tens of thousands of hours at 700°C (1292°F) and above. In the short-term, at 600°C (1112°F), creep rupture ductility increases with increase in creep rupture life. However, it tends to decrease after showing this maximum value and the creep rupture ductility decreases with increase in temperature. The complex shape of creep rate vs. time curves, with two minima in creep rate, was observed at 600°C (1112°F). Several type precipitates of niobium carbonitride (Nb(C,N)), Z phase (NbCrN), and copper were observed in Super 304H steel, as well as M23C6 carbide and sigma phase observed in SUS304H steel. The change in slope of stress vs. time to rupture curve is caused by disappearance of precipitation strengthening effect during creep exposure. Accuracy of creep rupture life evaluation was improved by stress range splitting method which takes into account the change in slope of stress vs. time to rupture curves was demonstrated.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada

Abstract Creep deformation behavior, creep strength property and microstructural evolution during creep exposure were investigated on Super 304H steel for boiler tube. In the high stress and lower temperature regime, creep rupture strength of Super 304H steel is higher than that of SUS304H steel. The slope of stress vs. time to rupture curve of Super 304H steel, however, becomes steeper with increase in creep exposure time and temperature, and the creep rupture strength of Super 304H steel becomes closer to that of SUS304H steel after the tens of thousands of hours at 700°C and above. In the short-term, at 600°C, creep rupture ductility increases with increase in creep rupture life. However, it tends to decrease after showing the maximum value and the creep rupture ductility decreases with increase in temperature. The complex shape of creep rate vs. time curves, with two minima in creep rate, was observed at 600°C. Several type precipitates of niobium carbonitride (Nb(C,N)), Z phase (NbCrN), and copper were observed in Super 304H steel, as well as M23C6 carbide and sigma phase observed in SUS304H steel. The change in slope of stress vs. time to rupture curve is caused by disappearance of precipitation strengthening effect during creep exposure. Accuracy of creep rupture life evaluation was improved by stress range splitting method which takes into accounts of the change in slope of stress vs. time to rupture curves was demonstrated.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


INEOS OPEN ◽  
2020 ◽  
Vol 3 ◽  
Author(s):  
A. V. Matseevich ◽  
◽  
A. A. Askadskii ◽  

One of the possible approaches to the analysis of a physical mechanism of time dependence for the resistance coefficients of materials is suggested. The material durability at the constant stress is described using the Zhurkov and Gul' equations and the durability at the alternating stress—using the Bailey criterion. The low strains lead to structuring of a material that is reflected in a reduction of the structure-sensitive coefficient in these equations. This affords 20% increase in the durability. The dependence of the resistance coefficient assumes an extremal character; the maximum is observed at the time to rupture lg tr ≈ 2 (s).


1994 ◽  
Vol 16 (2) ◽  
pp. 43-48
Author(s):  
Do Son

This paper describes the results of measurements and analysis of the parameters, characterizing technical state of offshore platforms in Vietnam Sea. Based on decreasing in time material characteristics because of corrosion and local destruction assessment on residual life time of platforms is given and variants for its repair are recommended. The results allowed to confirm advantage of proposed technical diagnostic method in comparison with others and have been used for oil and gas platform of Joint Venture "Vietsovpetro" in South Vietnam.


2019 ◽  
Vol 12 (1) ◽  
pp. 56-62 ◽  
Author(s):  
A. O. Nedosekin ◽  
A. V. Smirnov ◽  
D. P. Makarenko ◽  
Z. I. Abdoulaeva

The article presents new models and methods for estimating the residual service life of an autonomous energy system, using the functional operational risk criterion (FOR). The purpose of the article is to demonstrate a new method of durability evaluation using the fuzzy logic and soft computing framework. Durability in the article is understood as a complex property directly adjacent to the complex property of system resilience, as understood in the Western practice of assessing and ensuring the reliability of technical systems. Due to the lack of reliable homogeneous statistics on system equipment failures and recoveries, triangular fuzzy estimates of failure and recovery intensities are used as fuzzy functions of time based on incomplete data and expert estimates. The FOR in the model is the possibility for the system availability ratio to be below the standard level. An example of the evaluation of the FOR and the residual service life of a redundant cold supply system of a special facility is considered. The transition from the paradigm of structural reliability to the paradigm of functional reliability based on the continuous degradation of the technological parameters of an autonomous energy system is considered. In this case, the FOR can no longer be evaluated by the criterion of a sudden failure, nor is it possible to build a Markov’s chain on discrete states of the technical system. Assuming this, it is appropriate to predict the defi ning functional parameters of a technical system as fuzzy functions of a general form and to estimate the residual service life of the technical system as a fuzzy random variable. Then the FOR is estimated as the possibility for the residual life of the technical system to be below its warranty period, as determined by the supplier of the equipment.


Sign in / Sign up

Export Citation Format

Share Document