Pre-service Teachers’ Understanding of Science Practices for Inquiry–Oriented Chemistry Labs

2017 ◽  
Vol 2 (1) ◽  
pp. 37-42
Author(s):  
Heontae Shim ◽  
◽  
Suna Ryu ◽  
Science Scope ◽  
2017 ◽  
Vol 041 (04) ◽  
Author(s):  
Jonathan Hall ◽  
Su Gao ◽  
Malcolm Butler

1990 ◽  
Vol 7 (1) ◽  
pp. 1-7
Author(s):  
Anwar Ibrahim

Our understanding of science itself as a body of knowledge and as asystem of analysis and research has changed over the last decades, just asover the last two centuries, or especially after the age of Enlightement inEurope, science has become more powerful, more sophisticated and complex.It is rather difficult to determine where science ends and where technologybegins. In fact there is a gmwing awareness that the physical or nam sciences,as a means of studying and understanding nature, are relying on the more“humanistic“ and cultural approaches adopted by the social sciences or thehumanities. The tradition of natural science is being challenged by newdiscoveries of the non-physical and non-natural sciences which go beyondthe physical world.Certainly research is vital for the growth and development of all sciencesthat attempt to discover and understand the “secrets” of nature. The validityof any scientific theory depends on its research and methodological premisesand even that-its proposition or theories (in the words of a leading cosmologistand theoretical physicist, Stephen Hawking) -is tentative. Hawlung says: “Anyphysical theory is always provisional, in the sense that it is only a hypothesis:you can never prove it. No matter how many times the results of experimentsagree with some theory, you can never be sure that the next time the resultwill not contradict the theory. On the other hand, you can disprove a theoryby finding even a single observation that disagrees with the predictions ofthe theory.”The history of Western science is rooted in the idea of finding the ’truth’by objectivity. Nothing can be believed until there is a scientific proof ofits existence, or until it can be logically accepted by the rational mind. Theclassical scenario of scientific work gives you an austere picture of heroicactivity, undertaken against all odds, a ceaseless effort to subjugate hostileand menacing nature, and to tame its formidable forces. Science is depicted ...


Author(s):  
Leah R. Warner ◽  
Stephanie A. Shields

Intersectionality theory concerns the interdependence of systems of inequality and implications for psychological research. Social identities cannot be studied independently of one another nor separately from the societal processes that maintain inequality. In this chapter we provide a brief overview of the history of intersectionality theory and then address how intersectionality theory challenges the way psychological theories typically conceive of the person, as well as the methods of data gathering and analysis customarily used by many psychologists. We specifically address two concerns often expressed by feminist researchers. First, how to reconcile the use of an intersectionality framework with currently-valued psychological science practices. Second, how intersectionality transforms psychology’s concern with individual experience by shifting the focus to the individual’s position within sociostructural frameworks and their social and political underpinnings. In a concluding section we identify two future directions for intersectionality theory: how psychological research on intersectionality can facilitate social activism, and current developments in intersectionality theory.


2021 ◽  
pp. 074193252110172
Author(s):  
Daniel M. Maggin

Interest in transparent and open science is increasing in special education, school psychology, and related disciplines. Proponents for open science reforms provide evidence that researchers in special education, and the broader social sciences, engage in practices that mitigates its credibility and reduces the validity of information disseminated to practitioners and policymakers. In light of these issues, this article reports on a survey of journal editors-in-chief and associate editors to gain insight into concerns regarding research reproducibility, and the familiarity and viability of open science for improving research credibility. Results indicate that respondents were concerned about research reproducibility, were moderately familiar with open science practices, and viewed many as effective for improving research credibility. Finally, respondents supported the use of journals to encourage open science practices though there was little support for requiring their use. Findings are discussed in relation to open science and implications for research and practice.


1999 ◽  
Vol 8 (4) ◽  
pp. 267-284 ◽  
Author(s):  
Steve Alsop

While much of the work in the public understanding of science has focused on the public's appreciation of science and their familiarity with key scientific concepts, understanding the processes involved in learning science has largely been ignored. This article documents a study of how particular members of the public learn about radiation and radioactivity, and proposes a model to describe their learning—the Informal Conceptual Change Model [ICCM]. ICCM is a multidimensional framework that incorporates three theoretical dimensions—the cognitive, conative, and affective. The paper documents each of these dimensions, and then illustrates the model by drawing upon data collected in a case study. The emphasis of the analysis is on understanding how the members of the public living in an area with high levels of background radiation learn about the science of this potential health threat. The summarizing comments examine the need for a greater awareness of the complexities of informal learning.


Author(s):  
Cagtay Fabry ◽  
Andreas Pittner ◽  
Volker Hirthammer ◽  
Michael Rethmeier

AbstractThe increasing adoption of Open Science principles has been a prevalent topic in the welding science community over the last years. Providing access to welding knowledge in the form of complex and complete datasets in addition to peer-reviewed publications can be identified as an important step to promote knowledge exchange and cooperation. There exist previous efforts on building data models specifically for fusion welding applications; however, a common agreed upon implementation that is used by the community is still lacking. One proven approach in other domains has been the use of an openly accessible and agreed upon file and data format used for archiving and sharing domain knowledge in the form of experimental data. Going into a similar direction, the welding community faces particular practical, technical, and also ideological challenges that are discussed in this paper. Collaboratively building upon previous work with modern tools and platforms, the authors motivate, propose, and outline the use of a common file format specifically tailored to the needs of the welding research community as a complement to other already established Open Science practices. Successfully establishing a culture of openly accessible research data has the potential to significantly stimulate progress in welding research.


2020 ◽  
Vol 36 (3) ◽  
pp. 263-279
Author(s):  
Isabel Steinhardt

Openness in science and education is increasing in importance within the digital knowledge society. So far, less attention has been paid to teaching Open Science in bachelor’s degrees or in qualitative methods. Therefore, the aim of this article is to use a seminar example to explore what Open Science practices can be taught in qualitative research and how digital tools can be involved. The seminar focused on the following practices: Open data practices, the practice of using the free and open source tool “Collaborative online Interpretation, the practice of participating, cooperating, collaborating and contributing through participatory technologies and in social (based) networks. To learn Open Science practices, the students were involved in a qualitative research project about “Use of digital technologies for the study and habitus of students”. The study shows the practices of Open Data are easy to teach, whereas the use of free and open source tools and participatory technologies for collaboration, participation, cooperation and contribution is more difficult. In addition, a cultural shift would have to take place within German universities to promote Open Science practices in general.


1994 ◽  
Vol 3 (1) ◽  
pp. 3-23 ◽  
Author(s):  
Alan G. Gross

In the public understanding of science, rhetoric has two distinct roles: it is both a theory capable of analysing public understanding and an activity capable of creating it. In its analytical role, rhetoric reveals two dominant models of public understanding: the deficit model and the contextual model. In the deficit model, rhetoric acts in the minor role of creating public understanding by accommodating the facts and methods of science to public needs and limitations. In the contextual model, rhetoric and rhetorical analysis play major roles. Rhetorical analysis provides an independent source of evidence to secure social scientific claims; in addition, it supplies the grounds for a rhetoric of reconstruction, one that reconstitutes the fact and facts of science in the public interest.


Sign in / Sign up

Export Citation Format

Share Document