ACTIVATED SLUDGE DIFFUSION FOR COST EFFECTIVE BIOLOGICAL TREATMENT OF ODORS FROM WASTEWATER TREATMENT WORKS

2002 ◽  
Vol 2002 (5) ◽  
pp. 765-787 ◽  
Author(s):  
Vera L. Barbosa ◽  
Adam W. R. Brookes ◽  
Suzy Morton ◽  
Joanna E. Burgess ◽  
Richard M. Stuetz
2020 ◽  
Vol 148 ◽  
pp. 01002
Author(s):  
Herto Dwi Ariesyady ◽  
Mentari Rizki Mayanda ◽  
Tsukasa Ito

Activated sludge process is one of the wastewater treatment method that is applied for many wastewater types including painting process wastewater of automotive industry. This wastewater is well-known to have high heavy metals concentration which could deteriorate water environment if appropriate performance of the wastewater treatment could not be achieved. In this study, we monitored microbial community diversity in a Painting Biological Treatment (PBT) system. We applied a combination of cultivation and genotypic biological methods based on 16S rRNA gene sequence analysis to identify the diversity of active microbial community. The results showed that active microbes that could grow in this activated sludge system were dominated by Gram-negative bacteria. Based on 16S rRNA gene sequencing analysis, it was revealed that their microbial diversity has close association with Bacterium strain E286, Isosphaera pallida, Lycinibacillus fusiformis, Microbacterium sp., Orchobactrum sp., Pseudomonas guariconensis, Pseudomonas sp. strain MR84, Pseudomonas sp. MC 54, Serpens sp., Stenotrophomonas acidaminiphila, and Xylella fastidiosa with similarity of 86 – 99%. This findings reflects that microbial community in a Painting Biological Treatment (PBT) system using activated sludge process could adapt with xenobiotics in the wastewater and has a wide range of diversity indicating a complex metabolism mechanism in the treatment process.


2008 ◽  
Vol 57 (8) ◽  
pp. 1287-1293 ◽  
Author(s):  
A. Jobbágy ◽  
G. M. Tardy ◽  
Gy. Palkó ◽  
A. Benáková ◽  
O. Krhutková ◽  
...  

The purpose of the experiments was to increase the rate of activated sludge denitrification in the combined biological treatment system of the Southpest Wastewater Treatment Plant in order to gain savings in cost and energy and improve process efficiency. Initial profile measurements revealed excess denitrification capacity of the preclarified wastewater. As a consequence, flow of nitrification filter effluent recirculated to the anoxic activated sludge basins was increased from 23,000 m3 d−1 to 42,288 m3 d−1 at an average preclarified influent flow of 64,843 m3 d−1, Both simulation studies and microbiological investigations suggested that activated sludge nitrification, achieved despite the low SRT (2–3 days), was initiated by the backseeding from the nitrification filters and facilitated by the decreased oxygen demand of the influent organics used for denitrification. With the improved activated sludge denitrification, methanol demand could be decreased to about half of the initial value. With the increased efficiency of the activated sludge pre-denitrification, plant effluent COD levels decreased from 40–70 mg l−1 to < 30–45 mg l−1 due to the decreased likelihood of methanol overdosing in the denitrification filter


2019 ◽  
Vol 23 (1) ◽  
pp. 52-63 ◽  
Author(s):  
Elina Strade ◽  
Daina Kalnina

Abstract Pharmaceutical wastewater biological treatment plants are stressed with multi-component wastewater and unexpected variations in wastewater flow, composition and toxicity. To avoid operational problems and reduced wastewater treatment efficiency, accurate monitoring of influent toxicity on activated sludge microorganisms is essential. This paper outlines how to predict highly toxic streams, which should be avoided, using measurements of biochemical oxygen demand (BOD), if they are made in a wide range of initial concentration. The results indicated that wastewater containing multivalent Al3+ cations showed a strong toxic effect on activated sludge biocenosis irrespectively of dilutions, while toxicity of phenol and formaldehyde containing wastewater decreased considerably with increasing dilution. Activated sludge microorganisms were not sensitive to wastewater containing halogenated sodium salts (NaCl, NaF) and showed high treatment capacity of saline wastewater. Our findings confirm that combined indicators of contamination, such as chemical oxygen demand (COD), alone do not allow evaluating potential toxic influence of wastewater. Obtained results allow identifying key inhibitory substances in pharmaceutical wastewater and evaluating potential impact of new wastewater streams or increased loading on biological treatment system. Proposed method is sensitive and cost effective and has potential for practical implementation in multiproduct pharmaceutical wastewater biological treatment plants.


2018 ◽  
Vol 251 ◽  
pp. 06005 ◽  
Author(s):  
Nazira Dzhumagulova ◽  
Ilya Svetkov ◽  
Vladimir Smetanin ◽  
Nguyen Dinh Dap

The purpose of the present research was to enhance the efficiency of biological wastewater treatment through the direct impact on the metabolism of activated sludge. In the course of research, species and quantitative composition of biological community of activated sludge in aeration tanks during wastewater purification process was studied. Comparative analysis was carried out for linen production wastewater and household sewage. Possible application of biological treatment in linen production was evaluated. Proposals were developed on creation of controllable biological treatment facility. In this paper, biological methods are shown to be efficient for household sewage treatment. Comparative analysis was carried out for linen production wastewater and household sewage. Possible application of biological treatment in linen production was evaluated. Proposals were developed on creation of controllable biological treatment facility.


2013 ◽  
Vol 68 (9) ◽  
pp. 1932-1939 ◽  
Author(s):  
Vera L. Barbosa ◽  
Richard M. Stuetz

Odours from wastewater treatment plants are comprised of a mixture of various gases with hydrogen sulphide (H2S) often being the dominant constituent. Activated sludge diffusion (ASD) as a biotreatment system for odour abatement has been conducted for over 30 years but has limited broad application due to disagreement in the literature regarding the effect that ASD may have on wastewater treatment performance. The effects of continuous H2S diffusion at 25 ppmv, with weekly peaks of approximately 100 ppmv, on H2S removal efficiency and wastewater treatment performance was evaluated over a 2-month period using an activated sludge pilot plant. H2S removal averaged 100% during diffusion at 25 ppmv, and 98.9% during the 100 ppmv peak periods. A significant increase in mixed liquor volatile suspended solids concentration (P < 0.01) was observed during H2S diffusion, which may be due to an increase in H2S-degrading microorganisms. There was no adverse effect of H2S on nitrification throughout the ASD trials. Ammonia (NH3) removal was slightly better in the test receiving H2S diffusion (87.6%) than in the control (85.4%). H2S diffusion appeared to improve robustness of the AS biomass to operational upsets.


2018 ◽  
Vol 22 (6) ◽  
pp. 15-19
Author(s):  
E.H. Sakaeva ◽  
L.V. Rudakova

The results of experimental studies on the evaluation of the possibility of using enzyme complexes in the biological treatment of waste water from pulp and paper enterprises are presented. The use of enzyme complexes will increase the efficiency of wastewater treatment by COD and BOD, and will also have a beneficial effect on the hydrochemical and hydrobiological characteristics of activated sludge. Experimental studies have determined the points of introduction of enzyme complexes into the technological scheme of biological wastewater treatment.


Author(s):  
Yu.S. Chirikanova ◽  

The paper deals with the problem of mathematical modeling of biological wastewater treatment. The peculiarity of the biological treatment system is that a block with activated sludge, called an aeration tank, is used for water purification. To describe the process of biological wastewater treatment in aeration tanksa mathematical model developed in the GPS-X software package is proposed.


2019 ◽  
pp. 243-250
Author(s):  
Regimantas Dauknys

This article presents the wastewater treatment in small settlements and rural areas ofLithuania, including descriptions of capacity and loading of wastewater treatment plants(WWTPs), types of treatment facilities, and development trends of biological treatmentfacilities. In 2000 Lithuania had 597 WWTPs with capacity up to 1000 m3/d, 95% of them arethe biological treatment plants. Today the most of these WWTPs are unloaded due to thetendency to centralise wastewater treatment in rural areas of Lithuania that were in the eightand ninth decades.In small settlements and rural areas of Lithuania the aeration facilities are predominant. In theeight and ninth decades practically only the activated sludge systems were built. The situationbegan to change in the last decade of the last century: the biological filters and soil filtrationfacilities with discharge into surface waters were applied more frequently, so the building ofaeration facilities started to decrease.


Sign in / Sign up

Export Citation Format

Share Document