Transforming Municipal Effluent Into High Quality Water for Industry at Canada's Largest Membrane Based Water Reuse Facility

2006 ◽  
Vol 2006 (6) ◽  
pp. 6087-6106
Author(s):  
Richard Watson ◽  
Abdul Mohammed ◽  
Giorgio Grappolini ◽  
Chris Ward ◽  
Lakshaman Samarasinghe ◽  
...  
2015 ◽  
Vol 476 ◽  
pp. 1-9 ◽  
Author(s):  
Sukanyah Shanmuganathan ◽  
Mohammad A.H. Johir ◽  
Tien Vinh Nguyen ◽  
Jaya Kandasamy ◽  
Saravanamuthu Vigneswaran

2009 ◽  
Vol 60 (1) ◽  
pp. 251-259 ◽  
Author(s):  
C. Kazner ◽  
J. Meier ◽  
T. Wintgens ◽  
T. Melin

Direct capillary nanofiltration was tested for reclamation of tertiary effluent from a municipal wastewater treatment plant. This process can be regarded as a promising treatment alternative for high quality water reuse applications when combined with powdered activated carbon for enhanced removal of organic compounds. The nanofiltration was operated at flux levels between 20 and 25 L/(m2 h) at a transmembrane pressure difference of 2–3 bar for approximately 4,000 operating hours. The study was conducted with PAC doses in the range from 0 to 50 mg/L. The plant removal for DOC ranged from 88–98%. The sulfate retention of the membrane filtration process was between 87 and 96%. The process provided a consistently high permeate quality with respect to organic and inorganic key parameters.


2017 ◽  
Vol 8 (4) ◽  
pp. 490-496 ◽  
Author(s):  
Terutake Niwa ◽  
Takuya Yamashita ◽  
Masataka Mitsumizo ◽  
Masanobu Takahashi ◽  
Masashi Hatamoto ◽  
...  

Abstract A pilot plant was studied to investigate a new method for reclaiming wastewater from the industrial area of Jurong, producing high quality water from it for industrial reuse. The new process used an up-flow anaerobic sludge blanket (UASB) and a membrane bioreactor (MBR) with a submerged ceramic flat sheet membrane. The feedwater from the chamber with the industrial wastewater was high in chemical oxygen demand (COD), which varied between 644 and 2,380 mg L–1 and had a pH range of 6.7–7.1. The MBR process was operated in series at a flux of 18–25 Lm–2 h–1 for 100 days. The average COD and the biological oxygen demand of products of the above system were 155 and 9 mg L–1, respectively. The results of this study indicated that a UASB-ceramic MBR process was capable of stably producing high quality water for industrial reuse from industrial wastewater.


2021 ◽  
Vol 3 ◽  
Author(s):  
Marc Sauchelli Toran ◽  
Patricia Fernández Labrador ◽  
Juan Francisco Ciriza ◽  
Yeray Asensio ◽  
André Reigersman ◽  
...  

Water reuse is a safe and often the least energy-intensive method of providing water from non-conventional sources in water stressed regions. Although public perception can be a challenge, water reuse is gaining acceptance. Recent advances in membrane technology allow for reclamation of wastewater through the production of high-quality treated water, including potable reuse. This study takes an in-depth evaluation of a combination of membrane-based tertiary processes for its application in reuse of brewery wastewater, and is one of the few studies that evaluates long-term membrane performance at the pilot-scale. Two different advanced tertiary treatment trains were tested with secondary wastewater from a brewery wastewater treatment plant (A) ultrafiltration (UF) and reverse osmosis (RO), and (B) ozonation, coagulation, microfiltration with ceramic membranes (MF) and RO. Three specific criteria were used for membrane comparison: 1) pilot plant optimisation to identify ideal operating conditions, 2) Clean-In-Place (CIP) procedures to restore permeability, and 3) final water quality obtained. Both UF and Micro-Filtration membranes were operated at increasing fluxes, filtration intervals and alternating phases of backwash (BW) and chemically enhanced backwash (CEB) to control fouling. Operation of polymeric UF membranes was optimized at a flux of 25–30 LMH with 15–20 min of filtration time to obtain longer production periods and avoid frequent CIP membrane cleaning procedures. Combination of ozone and coagulation with ceramic MF membranes resulted in high flux values up to 120 LMH with CEB:BW ratios of 1:4 to 1:10. Coagulation doses of 3–6 ppm were required to deal with the high concentrations of polyphenols (coagulation inhibitors) in the feed, but higher concentrations led to increasing fouling resistance of the MF membrane. Varying the ozone concentration stepwise from 0 to 25 mg/L had no noticeable effect on coagulation. The most effective cleaning strategy was found to be a combination of 2000 mg/L NaOCl followed by 5% HCl which enabled to recover permeability up to 400 LMH·bar−1. Both polymeric UF and ceramic MF membranes produced effluents that fulfil the limits of the national regulatory framework for reuse in industrial services (RD 1620/2007). Coupling to the RO units in both tertiary trains led to further water polishing and an improved treated water quality.


2018 ◽  
Vol 753 ◽  
pp. 364-370 ◽  
Author(s):  
Yanyan Chen ◽  
Qiang Wang ◽  
Tianyong Zha ◽  
Jigang Min ◽  
Jingying Gao ◽  
...  

Author(s):  
E Rakhmetova ◽  
A Kozodaev ◽  
A Zavyalova ◽  
O Kondrateva ◽  
N Zvonkova

2007 ◽  
Vol 55 (1-2) ◽  
pp. 275-282 ◽  
Author(s):  
J.B. Rose

The number of people who have limited access to high-quality water has increased, and while this is a growing global crisis, water issues, problems and solutions are often seen as localised. Water reuse and reclamation will play a significant role in achieving sustainability and public health protection in the future. The wastewater and reuse community should be responsible for monitoring sewage impacts and improvements as demonstrated through pathogen reduction with appropriate treatment. Viruses, Cryptosporidium and Giardia can all be reduced during treatment anywhere from 99% to 99.9999%, achieving drinking water quality, if so desired. Recommendations to achieve better access to scientific information for decision making include: 1) developing a global data base for biological contaminant loading from wastewater and 2) defining the public health protection via reuse and reclamation.


Sign in / Sign up

Export Citation Format

Share Document