ADDRESSING HAZARDOUS AIR POLLUTANT AND ODOR ISSUES FOR NATURAL GAS FIRED LEAN BURN ENGINES

2006 ◽  
Vol 2006 (3) ◽  
pp. 931-944
Author(s):  
Larry Hottenstein ◽  
Larry Sasadeusz ◽  
Gregg Arney
Author(s):  
Daniel B. Olsen ◽  
Bryan D. Willson

Formaldehyde is a hazardous air pollutant (HAP) that is typically emitted from natural gas-fired internal combustion engines as a product of incomplete combustion. The US Environmental Protection Agency (EPA) is currently developing national emission standards to regulate HAP emissions, including formaldehyde, from stationary reciprocating internal combustion engines under Title III of the 1990 Clean Air Act Amendments. This work investigates the effect that variations of engine operating parameters have on formaldehyde emissions from a large bore natural gas engine. The subject engine is a Cooper-Bessemer GMV-4TF two-stroke cycle engine with a 14″ (36 cm) bore and a 14″ (36 cm) stroke. Engine parameter variations investigated include load, boost, ignition timing, inlet air humidity ratio, air manifold temperature, jacket water temperature, prechamber fuel supply pressure, exhaust backpressure, and speed. The data analysis and interpretation is performed with reference to possible formaldehyde formation mechanisms and in-cylinder phenomena.


1999 ◽  
Vol 122 (4) ◽  
pp. 611-616 ◽  
Author(s):  
Daniel B. Olsen ◽  
Charles E. Mitchell

Current research shows that the only hazardous air pollutant of significance emitted from large bore natural gas engines is formaldehyde CH2O. A literature review on formaldehyde formation is presented focusing on the interpretation of published test data and its applicability to large bore natural gas engines. The relationship of formaldehyde emissions to that of other pollutants is described. Formaldehyde is seen to have a strong correlation to total hydrocarbon (THC) level in the exhaust. It is observed that the ratio of formaldehyde to THC concentration is roughly 1.0–2.5 percent for a very wide range of large bore engines and operating conditions. The impact of engine operating parameters, load, rpm, spark timing, and equivalence ratio, on formaldehyde emissions is also evaluated. [S0742-4795(00)01004-8]


1999 ◽  
Vol 122 (4) ◽  
pp. 603-610 ◽  
Author(s):  
Charles E. Mitchell ◽  
Daniel B. Olsen

Recent testing of exhaust emissions from large bore natural gas engines has indicated that formaldehyde CH2O is present in amounts that are significant relative to hazardous air pollutant standards. In consequence, a detailed literature review has been carried out at Colorado State University to assess the current state of knowledge about formaldehyde formation mechanisms and evaluate its applicability to gas engines. In this paper the following topics from that review, which bear directly on formaldehyde formation in natural gas engines, are discussed: (1) post combustion equilibrium concentrations; (2) chemical kinetics; (3) flame propagation and structure; (4) partial oxidation possibilities; and (5) potential paths for engine out formaldehyde. Relevant data taken from the literature on equilibrium concentrations and in-flame temperatures and concentrations are presented in graphical form. A map of possible paths for engine out formaldehyde is used to summarize results of the review, and conclusions relative to formation and destruction mechanisms are presented. [S0742-4795(00)00904-2]


1993 ◽  
Vol 115 (4) ◽  
pp. 264-271 ◽  
Author(s):  
A. R. Ganji

Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NOx, and comparable CO2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NOx production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NOx production from electric heat pumps. Gas engine heat pumps produce about one-half CO2 compared to electric heat pumps.


2017 ◽  
Vol 16 (4) ◽  
pp. 809-819 ◽  
Author(s):  
Gabriel Lazar ◽  
Iulia Carmen Ciobotici Terryn ◽  
Andreea Cocarcea

2021 ◽  
pp. 146808742110050
Author(s):  
Enrica Malfi ◽  
Vincenzo De Bellis ◽  
Fabio Bozza ◽  
Alberto Cafari ◽  
Gennaro Caputo ◽  
...  

The adoption of lean-burn concepts for internal combustion engines working with a homogenous air/fuel charge is under development as a path to simultaneously improve thermal efficiency, fuel consumption, nitric oxides, and carbon monoxide emissions. This technology may lead to a relevant emission of unburned hydrocarbons (uHC) compared to a stoichiometric engine. The uHC sources are various and the relative importance varies according to fuel characteristics, engine operating point, and some geometrical details of the combustion chamber. This concern becomes even more relevant in the case of engines supplied with natural gas since the methane has a global warming potential much greater than the other major pollutant emissions. In this work, a simulation model describing the main mechanisms for uHC formation is proposed. The model describes uHC production from crevices and flame wall quenching, also considering the post-oxidation. The uHC model is implemented in commercial software (GT-Power) under the form of “user routine”. It is validated with reference to two large bore engines, whose bores are 31 and 46 cm (engines named accordingly W31 and W46). Both engines are fueled with natural gas and operated with lean mixtures (λ > 2), but with different ignition modalities (pre-chamber device or dual fuel mode). The engines under study are preliminarily schematized in the 1D simulation tool. The consistency of 1D engine schematizations is verified against the experimental data of BMEP, air flow rate, and turbocharger rotational speed over a load sweep. Then, the uHC model is validated against the engine-out measurements. The averaged uHC predictions highlight an average error of 7% and 10 % for W31 and W46 engines, respectively. The uHC model reliability is evidenced by the lack of need for a case-dependent adjustment of its tuning constants, also in presence of relevant variations of both engine load and ring pack design.


Sign in / Sign up

Export Citation Format

Share Document