Micro Pollutant Removal Using MBR Technology with Powdered Activated Carbon Addition in Municipal Wastewater Treatment

2016 ◽  
Vol 2016 (7) ◽  
pp. 2751-2763
Author(s):  
Stephen Katz ◽  
Sven Baumgarten ◽  
Martha Dagnew ◽  
Nick Adams
1999 ◽  
Vol 40 (1) ◽  
pp. 191-198 ◽  
Author(s):  
L. Nicolet ◽  
U. Rott

The use and recirculation of powdered activated carbon (PAC) as an advanced treatment for colour removal in municipal wastewater treatment plants is presented. Studied wastewaters consist of domestic effluents with a high portion of dyehouse residual waters. The particularity of the treatment is that PAC is not disposed of before being recirculated several times. Therefore, it enables the use of a great part of the total adsorption capacity of the PAC. A positive side effect is that halogenated and refractory organic compounds, which are not degraded by micro-organisms in a conventional municipal wastewater treatment plant, are removed too. This paper describes results which were obtained in batch experiments and in a pilot plant during two years of observation, and concludes with advantages and drawbacks of this technology.


Author(s):  
Manoj Kumar ◽  
Rajesh Singh

In the present study area-based, pollutant removal kinetic analysis was considered using the Zero-order, first-order decay and efficiency loss (EL) models in the constructed wetlands (CWs) for municipal wastewater treatment....


2015 ◽  
Vol 72 (4) ◽  
pp. 616-622 ◽  
Author(s):  
Defang Ma ◽  
Baoyu Gao ◽  
Yan Wang ◽  
Qinyan Yue ◽  
Qian Li

A hybrid process with membrane bioreactor (MBR) and powdered activated carbon (PAC), PAC/MBR, was used for real municipal wastewater treatment and reuse. The roles of chlorine dose, contact time, pH and bromide in trihalomethane (THM) formation and speciation during chlorination of the reclaimed water were investigated. Total trihalomethane (TTHM) yield exponentially increased to maximum with increasing chlorine dose (correlation coefficient R2 = 0.98). Prolonging substrate chlorine contact time significantly promoted TTHM formation. Less than 40% of THMs formed in the first 24 h, indicating that the PAC/MBR effluent organic matters were mostly composed of slow-reacting precursors. Increasing pH and bromide concentration facilitated THM formation. Higher chlorine dose and contact time enhanced chloro-THM formation. The bromo-THM formation was favored at near neutral condition. Despite the variation of chlorine dose, contact time and pH, the yield of THM species in order was usually CHCl3 > CHBrCl2 > CHBr2Cl > CHBr3. However, THM speciation shifted from chlorinated species to brominated species with increasing bromide concentration.


2006 ◽  
Vol 6 (4) ◽  
pp. 17-25 ◽  
Author(s):  
A. Ried ◽  
J. Mielcke

The use of ozone and/or UV for water treatment processes is often a combination of an ozone and/or UV-step with additional treatment steps, e.g. biological treatment, flocculation, filtration and activated carbon. Therefore, it is necessary to develop an optimized combination of these different steps. This article will demonstrate the advantages presenting two examples for drinking water treatment and two examples for municipal wastewater treatment.


2021 ◽  
Vol 232 (7) ◽  
Author(s):  
K. Marek ◽  
K. Pawęska ◽  
A. Bawiec ◽  
J. Baran

AbstractThe aim of this study was to analyse the impact of velocity in the hydroponic lagoon used as the 3rd stage of municipal wastewater treatment on washing out of the particles suspended in the sewage as well as settled on the bottom of the hydroponic ditch. In order to analyse the flow velocity in the lagoon, 12 cross-sections were determined at points where the speed and motion of particles can change. Wastewater samples were taken in the summer month from each of the 12 sampling points (the depth of 0.1 m) and the basic physicochemical parameters of sewage were determined (BOD5, COD, TOC, TSS, turbidity). In selected cross-sections, a granulometric analysis of particles was made to determine the characteristics of suspended solids in the wastewater flow path. Based on the analysis, it was found that velocities in the lagoon during aeration can be ten times higher (0.070 m·s−1) than those assumed by designers (0.006 m·s−1). Such a large difference means that the sedimentation conditions assumed in the project cannot be met, which may result in an increase in the total suspended solids and organic matter concentrations at the outflow to the receiving water body. During the flow through the hydroponic ditch, the highest efficiency of pollutant removal was indicated for BOD5 — 88.7% and TSS — 80%, while the COD removal occurred with the lowest efficiency — 34.1%. Improving flow conditions as designed in the hydroponic lagoon technological project may increase the efficiency of wastewater treatment at the third stage of treatment.


2009 ◽  
Vol 60 (1) ◽  
pp. 251-259 ◽  
Author(s):  
C. Kazner ◽  
J. Meier ◽  
T. Wintgens ◽  
T. Melin

Direct capillary nanofiltration was tested for reclamation of tertiary effluent from a municipal wastewater treatment plant. This process can be regarded as a promising treatment alternative for high quality water reuse applications when combined with powdered activated carbon for enhanced removal of organic compounds. The nanofiltration was operated at flux levels between 20 and 25 L/(m2 h) at a transmembrane pressure difference of 2–3 bar for approximately 4,000 operating hours. The study was conducted with PAC doses in the range from 0 to 50 mg/L. The plant removal for DOC ranged from 88–98%. The sulfate retention of the membrane filtration process was between 87 and 96%. The process provided a consistently high permeate quality with respect to organic and inorganic key parameters.


Sign in / Sign up

Export Citation Format

Share Document