scholarly journals Stability of the B. abortus S19 vaccine strain with a eukaryotic expression plasmid encoding the G glycoprotein from the rabies virus

2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Nidia G. Pazos-Salazar ◽  
Juan C. Benitez-Serrano ◽  
José L. Calderón-Chamorro ◽  
Rigoberto Hernández-Castro ◽  
Efrén Díaz-Aparicio ◽  
...  

Brucella abortus S19 is an intracellular vaccine strain against bovine brucellosis. Rabies is a lethal disease in cattle. Plasmids encoding the G glycoprotein from the rabies virus induce a protective immune response in different animal species. A vector called pBBR4-CMV-Ggp-SV40+, which encodes the G gene, regulated by the cytomegalovirus eukaryotic expression promoter, and which can be used to transform the B. abortus S19 vaccine strain, was constructed. The stability of the transformant strain was tested both in vitro and in vivo. In the in vitro assays, B. abortus S19 pBBR4-CMV-Ggp-SV40+ was grown for 5 sequential passages, and for the in vivo assays, female BALB/c mice were infected. Colony-forming unit counting and plasmid identification were performed in each passage and in the spleens at 7 days post-infection. To test the plasmid stability in the strain, all parameters were determined with and without antibiotic. The bacterial concentration was lower with antibiotic than without it, but the bacterial growth was more homogeneous. The plasmid was identified in antibiotic- and non-antibiotic-treated isolated colonies under both in vitro and in vivo conditions. The plasmid construct was also transfected into BHK-21 cells, which express the G glycoprotein. The B. abortus S19 pBBR4-CMV-Ggp-SV40+ strain showed stability, representing a suitable candidate vector for developing a bivalent vaccine against brucellosis and rabies. This is the first time that a Brucella species has been transformed with a eukaryotic expression plasmid.

2006 ◽  
Vol 55 (10) ◽  
pp. 1389-1393 ◽  
Author(s):  
Binbo Liu ◽  
Shengwu Liu ◽  
Xueju Qu ◽  
Junyan Liu

A full-length cDNA of granulysin was inserted into the pcDNA3.1(−) vector to construct a eukaryotic expression plasmid for granulysin. The recombinant plasmids were injected intramuscularly into mice infected with Mycobacterium tuberculosis to evaluate the protective effect of granulysin. Granulysin significantly decreased the weight index (WI) of the spleen, reduced the numbers of viable bacteria in lung and spleen, and reduced the lesions of lung tissue in granulysin-rDNA-immunized mice compared with those of control group mice. In vitro, the serum of the recombinant-plasmid-immunized mice inhibited the viability of M. tuberculosis by the physical disruption of cell membranes. Therefore, granulysin has a therapeutic effect against M. tuberculosis.


2020 ◽  
Author(s):  
Dan Zhu ◽  
Yue Meng ◽  
Aaodeng Qimuge ◽  
Bilige Bilige ◽  
Tegexi Baiyin ◽  
...  

AbstractThe 2019 novel coronavirus disease (COVID-19) is the disease that has been identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the prophylactic treatment of SARS-CoV-2 is still under investigation. The effective delivery of eukaryotic expression plasmids to the immune system’s inductive cells constitutes an essential requirement for the generation of effective DNA vaccines. Here, we have explored the use of Salmonella typhimurium as vehicles to deliver expression plasmids orally. Attenuated Salmonella phoP harboring eukaryotic expression plasmids that encoded spike protein of SARS-CoV-2 was administered orally to Wistar rats. Rats were immunized orally with Salmonella that carried a eukaryotic expression plasmid once a week for three consecutive weeks. The efficiency of the vaccination procedure was due to the transfer of the expression plasmid from the bacterial carrier to the mammalian host. Evidence for such an event could be obtained in vivo and in vitro. Our results showed that all immunized animals generated humoral immunity against the SARS-CoV-2 spike protein, indicating that a Salmonella-based vaccine carrying the Spike gene can elicit SARS-CoV-2-specific humoral immune responses in rats, and may be useful for the development of a protective vaccine against SARS-CoV-2 infection.


1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


1975 ◽  
Vol 33 (03) ◽  
pp. 617-631 ◽  
Author(s):  
H. S Kingdon ◽  
R. L Lundblad ◽  
J. J Veltkamp ◽  
D. L Aronson

SummaryFactor IX concentrates manufactured from human plasma and intended for therapeutic infusion in man have been suspected for some time of being potentially thrombogenic. In the current studies, assays were carried out in vitro and in vivo for potentially thrombogenic materials. It was possible to rank the various materials tested according to the amount of thrombogenic material detected. For concentrates not containing heparin, there was substantial agreement between the in vivo and in vitro assays, with a coefficient of correlation of 0.77. There was no correlation between the assays for thrombogenicity and the antithrombin III content. We conclude that many presently available concentrates of Factor IX contain substantial amounts of potentially thrombogenic enzymes, and that this fact must be considered in arriving at the decision whether or not to use them therapeutically.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


Sign in / Sign up

Export Citation Format

Share Document