Binding to Secreted Bone Matrix in vitro

BIO-PROTOCOL ◽  
2014 ◽  
Vol 4 (4) ◽  
Author(s):  
Aurélie Tormo ◽  
Christian Beauséjour ◽  
Jean-François Gauchat
Keyword(s):  
1962 ◽  
Vol 237 (11) ◽  
pp. 3555-3559
Author(s):  
William P. Deiss ◽  
Leila B. Holmes ◽  
C. Conrad Johnston
Keyword(s):  

2017 ◽  
Vol 302 (11) ◽  
pp. 1700300 ◽  
Author(s):  
Jose Gustavo De la Ossa ◽  
Luisa Trombi ◽  
Delfo D'Alessandro ◽  
Maria Beatrice Coltelli ◽  
Lorenzo Pio Serino ◽  
...  

2012 ◽  
Vol 1417 ◽  
Author(s):  
Titilayo Moloye ◽  
Christopher Batich

ABSTRACTCylindrical porous polycaprolactone (PCL) scaffolds containing 25, 35, and 50 wt% demineralized bone matrix (DBM) were fabricated using a salt-leaching method for application in bone engineering. In the present work, PCL-DBM scaffolds were monitored for calcium and phosphorus deposition in both deionized (DI) water and simulated body fluid (SBF) for time periods of 5, 10, 15, and 20 days at 37°C under constant rotation. An in vitro assessment of the bioactivity of synthetic materials using SBF under physiological conditions can be used as a barometer of scaffold behavior in vivo. DBM, an osteoinductive material, was used to gauge if there was a correlation between the concentration of DBM within a scaffold and the apatite formation on its surface. Biochemical assays, alizarin red S staining, and scanning electron microscopy (SEM) with elemental analysis of calcium and phosphorus were consistent in that they confirmed that PCL scaffolds containing 35 wt% DBM in SBF at 14 days post-immersion showed signs of early apatite formation.


Author(s):  
Maria Bolina Kersanach ◽  
Jorge Vicente Lopes da Silva ◽  
Janaina de Andrea Dernowsek

Increasingly, biofabrication is seen as a promising strategy in the tissue engineering and regenerative medicine fields. It proves to be a good alternative for drug and cosmetics testing and even for transplantation tissues and organs in humans. However, long before we dream with this science impacting our daily lives, we need to know it more on a smaller scale - the cellular interactions involved, the biomolecules, the transcription factors, the differentiation phases - it is all highly correlated, sensitive and complex. With the aim of reducing the investments of large sums of money and time with in vitro experiments, this work proposes the creation of a predictive model to the biological structures that will be biofabricated. From the use of mathematical and computational methods, simulations of biological phenomena are made through the translation of the biological processes described in the literature into logical processes written in programming languages. These in silico strategies make possible to iteratively refine physical and biochemical parameters before the in vitro stage. To exemplify this approach, an osteogenesis and angiogenesis implementation is shown in a virtual tissue spheroid (the bioprinting basic unit) - from mesenchymal and endothelial cells to a vascularized bone matrix.


2021 ◽  
Author(s):  
Yutong Wu ◽  
Hongbo Ai ◽  
Yuchi Zou ◽  
Jianzhong Xu

Abstract Small extracellular vesicles (sEVs) are considered to play critical roles in intercellular communications during normal and pathological processes since they are enriched with miRNAs and other signal molecules. In bone remodeling, osteoclasts generate large amounts of sEVs. However, there is very little research about whether and how osteoclast-derived sEVs (OC-sEVs) affect surrounding cells. In our study, microarray analysis identified miR-106a-5p highly enriched in OC-sEV. Further experiments confirmed that OC-sEVs inhibited Fam134a through miR-106a-5p and significantly promoted bone mesenchymal stem cell (BMSC) osteogenic mineralization in vitro. Next, we prepared sEV-modified demineralized bone matrix (DBM) as a repair scaffold, and used a calvarial defect mouse model to evaluate the pro-osteogenic activities of the scaffold. In vivo result indicated DBM modified with miR-106a-5p-sEVs showed an enhanced capacity of bone regeneration. This important finding further emphasizes that sEV-mediated miR-106a-5p transfer play critical roles in osteogenesis and indicate a novel communication mode between osteoclasts and BMSCs.


1951 ◽  
Vol 93 (5) ◽  
pp. 415-426 ◽  
Author(s):  
Robert S. Siffert

The role of alkaline phosphatase in osteogenesis has been investigated by histochemical techniques with particular attention to its relationship to phosphate metabolism and matrix elaboration. The upper tibial epiphysis mainly, and other epiphyses as well of growing rabbits, and the costochondral junctions of newborn human beings were studied, as were bone grafts in growing rabbits. The findings in the newborn human beings were identical with those in the rabbits. Phosphatase activity and free phosphate localization do not universally coincide. The enzyme appears to be intimately related to preosseous cellular metabolism and to the elaboration of a bone matrix that is chemically calcifiable. It remains possible, however, that phosphatase may be in some way involved in making inorganic salts available to the calcifiable matrix. If this function does exist it is a secondary one, since the elaboration of bone matrix, which is always associated with phosphatase activity, can and does occur in the absence of calcification. Calcification may occur later, in the absence of the enzyme. There is evidence to suggest that cartilage matrix is utilized in the formation of bone matrix. Phosphatase is physiologically active only in the presence of living cells. Where it is demonstrable in the absence of living cells, as in the cartilage remnants of the metaphysis, it appears to be physiologically inactive. Since phosphatase is temporarily inactivated in weakly acid media, and readily reactivated by alkaline solutions it is possible that the enzyme might survive in a physiologically inactive state in weakly acid tissues, and yet remain capable of histochemical demonstration in vitro in an alkaline medium. Phosphatase is not related to the disappearance of chondroitin sulfate.


1972 ◽  
Vol 20 (4) ◽  
pp. 279-292 ◽  
Author(s):  
D. BAYLINK ◽  
J. WERGEDAL ◽  
E. THOMPSON

In both ground sections and demineralized frozen sections of the rat tibial cortex, osteoid but not mature bone matrix stained for proteinpolysaccharides with the Alcian Blue and toluidine blue techniques. The loss of proteinpolysaccharide staining occurred precisely at the mineralizing front, which was identified by in vivo lead or procion markers, not only in normal animals but also in animals in which osteoid width was either increasing or decreasing. In vitro, both proteases and saccharidases abolished proteinpolysaccharide staining of osteoid. Critical electrolyte concentration and other procedures indicated that the major acid polysaccharide component in osteoid is chondroitin sulfate. Consistent with these findings, electron microprobe analyses revealed that sulfur concentration was high in osteoid but dropped abruptly as calcium concentration increased at the mineralizing front. The precise synchronization between loss of proteinpolysaccharides and onset of mineralization under various experimental conditions provides strong indirect evidence that the loss of these macromolecules is somehow involved in initiation of mineralization in bone.


Sign in / Sign up

Export Citation Format

Share Document