Acid Extraction of Total Histone from Colon Cancer HCT116 Cells

BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (22) ◽  
Author(s):  
Lin-Lin Cao ◽  
Wei-Guo Zhu
Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


2021 ◽  
Author(s):  
Moureq Rashed Alotaibi ◽  
Homood As Sobeia ◽  
Munirah Alohaydib ◽  
Faten Alaqil ◽  
Khalid Alhazzani ◽  
...  

Author(s):  
Qing Ye ◽  
Yuanfei Peng ◽  
Feng Huang ◽  
Jinhu Chen ◽  
Yangmei Xu ◽  
...  

Background: In previous studies, we provided evidence suggesting the involvement of γ-synuclein in growth, invasion, and metastasis of colon cancer cells in vitro and in vivo. Among γ-synuclein downstream genes, the microtubule-associated protein 1 light chain 3 (LC3), an autophagy gene, was screened by gene expression profile chip analysis. Objective: We planned to investigate the functional effects of γ-synuclein on autophagy induced by ER stress in colon cancer cells. Methods: We investigated the functional effects of γ-synuclein on autophagy and apoptosis induced by Thapsigargin (TG), ER stressinducing agent, in colon cancer cell lines using immunofluorescence staining, RT-PCR, western blot, CCK8 test, flow cytometry analysis, and transmission electron microscopy. To further determine how γ-synuclein regulated autophagy and apoptosis, PD98059 (ERK inhibitor), SP600125 (ERK inhibitor), anisomycin (JNK activator), and c-Jun siRNA were used respectively in γ-synuclein siRNA transfected HCT116 cells. Then, autophagy proteins, apoptosis proteins, and pathway proteins were detected by western blot analysis. The expression of autophagy genes was assessed by RT-PCR. Results: Our data showed that ER stress-induced colon cancer cells autophagy mainly in the early stage (0-24h) and apoptosis mainly in the late stage (24-48h). ER stress up-regulated γ-synuclein gene and protein expression in colon cancer cells, accompanied by autophagy. γ-synuclein protected HCT116 cells by enhancing autophagy in the early stage (0-24h) through activation of ERK and JNK pathway and inhibiting apoptosis in the late stage (24-48h) through inhibition of the JNK pathway. γ-synuclein could promote autophagy via the JNK pathway activation of ATG genes, LC3, Beclin 1, and ATG7. γ-synuclein may play a role in the transition between autophagy and apoptosis in our model. Conclusion: Overall, we provided the first experimental evidence to show that γ-synuclein may play an important role in autophagy that protects colon cancer cells from ER stress. Therefore, our data suggest a new molecular mechanism for γ-synuclein-mediated CRC progression.


Author(s):  
Kon-Young Ji ◽  
Ki Mo Kim ◽  
Yun Hee Kim ◽  
Ki-Shuk Shim ◽  
Joo Young Lee ◽  
...  

The molecular mechanism underlying the anticancer effects of Anemarrhena asphodeloides (A. asphodeloides) on colon cancer is unknown. This is the first study evaluating the anticancer effect of A. asphodeloides extract (AA-Ex) in serum-starved colorectal cancer cells. Changes in cell proliferation and morphology in serum-starved MC38 and HCT116 colorectal cancer cells were investigated using MTS assay. Cell cycle and apoptosis were investigated using flow cytometry, and cell cycle regulator expression was determined using qRT-PCR. Apoptosis regulator protein levels and mitogen-activated protein kinase (MAPK) phosphorylation were assessed using western blotting. AA-Ex sensitively suppressed proliferation of serum-starved colorectal cancer cells, with MC38 and HCT116 cells showing greater changes in proliferation after treatment with AA-Ex under serum starvation than HaCaT and RAW 264.7 cells. AA-Ex inhibited cell cycle progression in serum-starved MC38 and HCT116 cells and increased the expression of cell cycle inhibitors (p53, p21, and p27). Furthermore, AA-Ex induced apoptosis in serum-starved MC38 and HCT116 cells. Consistently, AA-Ex suppressed the expression of the anti-apoptotic molecule Bcl-2 and upregulated pro-apoptotic molecules (cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved-PARP) in serum-starved cells. AA-Ex treatment under serum starvation decreased AKT and ERK1/2 phosphorylation in the cell survival signaling pathway but increased p38 and JNK phosphorylation. Furthermore, AA-Ex treatment with serum starvation increased the levels of the transcription factors of the p38 and JNK pathway. Serum starvation sensitizes colorectal cancer cells to the anticancer effect of A. asphodeloidesvia p38/JNK-induced cell cycle arrest and apoptosis. Hence, AA-Ex possesses therapeutic potential for colon cancer treatment.


2020 ◽  
Vol 20 (6) ◽  
pp. 1-1
Author(s):  
Xianliang Cheng ◽  
Guohui Wang ◽  
Yuan Liao ◽  
Jiao Mo ◽  
Chen Qing

2021 ◽  
Vol 17 (10) ◽  
pp. 1972-1983
Author(s):  
Yi Zhang ◽  
Qing Jiang ◽  
Xinyi Liu ◽  
Liping Peng ◽  
Xinyi Tang ◽  
...  

To discuss the effect of hydrophobic groups of a polymer on the structural properties and function of polymer nanoparticles (NPs), we grafted chenodeoxycholic acid (CDCA) with pullulan (PU) to form hydrophobically modified PU (PUC). Three PUC polymers, namely, PUC-1, PUC-2, and PUC-3, with different degrees of substitution were designed by changing the feed ratio of CDCA and PU. 1H-NMR spectra showed that the PUC polymer was successfully synthesized, and the degrees of hydrophobic substitution for PUC-1, PUC-2, and PUC-3 were calculated to be 10.66%, 13.92%, and 16.94%, respectively. The PUC NPs were prepared by the dialysis method and were shown to be uniformly spherical by transmission electron microscopy (TEM). The average sizes were about (220±10) nm, (203±7) nm, and (163±6) nm under dynamic light scattering (DLS) for PUC-1 NPs, PUC-2 NPs, and PUC-3 NPs, respectively. Drug release experiments showed that the three PUC/DOX NPs exhibited good sustained release. At 48 h, the IC50 of doxorubicin in inhibiting colon cancer HCT116 cells was 0.0904 μg/mL. A cell study showed that PUC-3/DOX NPs had the highest uptake efficiency by HCT116 cells with the most cytotoxicity and inhibited the migration of HCT116 cells with the highest efficiency. The structural properties and function of polymer NPs were closely related to the hydrophobic groups in the polymer, and NPs with higher hydrophobicity showed a smaller size, higher drug capacity, and greater cell efficiency.


Sign in / Sign up

Export Citation Format

Share Document