γ-Synuclein is Closely Involved in Autophagy that Protects Colon Cancer Cell from Endoplasmic Reticulum Stress

Author(s):  
Qing Ye ◽  
Yuanfei Peng ◽  
Feng Huang ◽  
Jinhu Chen ◽  
Yangmei Xu ◽  
...  

Background: In previous studies, we provided evidence suggesting the involvement of γ-synuclein in growth, invasion, and metastasis of colon cancer cells in vitro and in vivo. Among γ-synuclein downstream genes, the microtubule-associated protein 1 light chain 3 (LC3), an autophagy gene, was screened by gene expression profile chip analysis. Objective: We planned to investigate the functional effects of γ-synuclein on autophagy induced by ER stress in colon cancer cells. Methods: We investigated the functional effects of γ-synuclein on autophagy and apoptosis induced by Thapsigargin (TG), ER stressinducing agent, in colon cancer cell lines using immunofluorescence staining, RT-PCR, western blot, CCK8 test, flow cytometry analysis, and transmission electron microscopy. To further determine how γ-synuclein regulated autophagy and apoptosis, PD98059 (ERK inhibitor), SP600125 (ERK inhibitor), anisomycin (JNK activator), and c-Jun siRNA were used respectively in γ-synuclein siRNA transfected HCT116 cells. Then, autophagy proteins, apoptosis proteins, and pathway proteins were detected by western blot analysis. The expression of autophagy genes was assessed by RT-PCR. Results: Our data showed that ER stress-induced colon cancer cells autophagy mainly in the early stage (0-24h) and apoptosis mainly in the late stage (24-48h). ER stress up-regulated γ-synuclein gene and protein expression in colon cancer cells, accompanied by autophagy. γ-synuclein protected HCT116 cells by enhancing autophagy in the early stage (0-24h) through activation of ERK and JNK pathway and inhibiting apoptosis in the late stage (24-48h) through inhibition of the JNK pathway. γ-synuclein could promote autophagy via the JNK pathway activation of ATG genes, LC3, Beclin 1, and ATG7. γ-synuclein may play a role in the transition between autophagy and apoptosis in our model. Conclusion: Overall, we provided the first experimental evidence to show that γ-synuclein may play an important role in autophagy that protects colon cancer cells from ER stress. Therefore, our data suggest a new molecular mechanism for γ-synuclein-mediated CRC progression.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing-Qiang Huang ◽  
He-Feng Li ◽  
Jing Zhu ◽  
Jun-Wei Song ◽  
Xian-Bin Zhang ◽  
...  

Abstract Background Colorectal cancer is the third most common diagnosis. Oxaliplatin is used as first-line treatment of colon cancer. However, oxaliplatin resistance greatly reduces its therapeutic effect. SRPK1 involves in pre-mRNA splicing and tumorigenesis. How SRPK1 mediates drug resistance in colon cancer is unknown. Methods The expression of SRPK1 was analyzed in the TCGA and the CPTAC pan-cancer samples and detected in colon cancer cell lines and tissues by IHC and western blot. The MTT and TUNEL assay were used to verify the anti-apoptosis ability of colon cancer cell. The activation of NF-κB was determined by luciferase assay and qRT-PCR. AKT, IKK, IκB and their phosphorylation level were verified by western blot. Results We found that SRPK1 expression was the second highest in TCGA and the CPTAC pan-cancer samples. The mRNA and protein levels of SRPK1 were increased in tissues from patients with colon cancer. SRPK1 was associated with clinical stage and TNM classifications in 148 cases of colon cancer patients. High SRPK1 levels correlated with poor prognosis (p < 0.001). SRPK1 overexpression enhanced the anti-apoptosis ability of colon cancer cells, whereas SRPK1 silencing had the opposite effect under oxaliplatin treatment. Mechanistically, SRPK1 enhances IKK kinase and IκB phosphorylation to promote NF-κB nuclear translocation to confer oxaliplatin resistance. Conclusions Our findings suggest that SRPK1 participates in colon cancer progression and enhances the anti-apoptosis capacity to induce drug resistance in colon cancer cells via NF-κB pathway activation, and thus might be a potential pharmaceutically target for colon cancer treatment.


2017 ◽  
Vol 42 (3) ◽  
pp. 929-938 ◽  
Author(s):  
Yingjuan Yang ◽  
Yanhua Zhang ◽  
Lan Wang ◽  
Shaochin Lee

Background/Aims: Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Levistolide A (LA), a natural compound isolated from the traditional Chinese herb Ligusticum chuanxiong Hort, is used for treating cancer. In this study, we investigated the anticancer effect of LA in HCT116 and its isogenic p53-/- colon cancer cells, as well as the underlying mechanisms. Methods: MTT assay was used to evaluate the effect of LA on the viability of cancer cells. Apoptosis and reactive oxygen species (ROS) production by the cells were determined by flow cytometry. Protein expression was detected by western blotting. Results: The results showed that LA inhibited viability and caused apoptosis of both wild-type and p53-/- HCT116 cells. LA was able to trigger production of ROS and endoplasmic reticulum (ER) stress. Inhibition of ROS using N-acetylcysteine abrogated LA-induced ER stress and apoptosis, as well as the reduction in cancer cell viability. Conclusion: Our results indicate that LA causes apoptosis of colon cancer cells via ROS-mediated ER stress pathway. It will be interesting to develop the natural compound for chemotherapy of cancers such as CRC.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Author(s):  
Mattias Lepsenyi ◽  
Nader Algethami ◽  
Amr A. Al-Haidari ◽  
Anwar Algaber ◽  
Ingvar Syk ◽  
...  

AbstractPeritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zeinab Faghfoori ◽  
Mohammad Hasan Faghfoori ◽  
Amir Saber ◽  
Azimeh Izadi ◽  
Ahmad Yari Khosroushahi

Abstract Background Colorectal cancer (CRC), with a growing incidence trend worldwide, is resistant to apoptosis and has uncontrolled proliferation. It is recently reported that probiotic microorganisms exert anticancer effects. The genus Bifidobacterium, one of the dominant bacterial populations in the gastrointestinal tract, has received increasing attention because of widespread interest in using it as health-promoting microorganisms. Therefore, the present study aimed to assess the apoptotic effects of some bifidobacteria species on colon cancer cell lines. Methods The cytotoxicity evaluations performed using MTT assay and FACS-flow cytometry tests. Also, the effects of five species of bifidobacteria secretion metabolites on the expression level of anti- or pro-apoptotic genes including BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9, and Fas-R studied by real-time polymerase chain reaction (RT-PCR) method. Results The cell-free supernatant of all studied bifidobacteria significantly decreased the survival rates of colon cancer cells compared with control groups. Flow cytometric and RT-PCR results indicated that apoptosis is induced by bifidobacteria secretion metabolites and the mechanism for the action of bifidobacteria species in CRC prevention could be down-regulation and up-regulation of anti-apoptotic and, pro-apoptotic genes. Conclusions In the present study, different bifidobacteria species showed anticancer activity on colorectal cancer cells through down-regulation and up-regulation of anti-apoptotic and pro-apoptotic genes. However, further studies are required to clarify the exact mechanism of apoptosis induction by bifidobacteria species.


2020 ◽  
Vol 24 (5) ◽  
pp. 260-266
Author(s):  
Sijeong Bae ◽  
Min-Kyoung Kim ◽  
Hong Seok Kim ◽  
Young-Ah Moon

Author(s):  
Dini Permata Sari ◽  
Mohammad Basyuni ◽  
Poppy Anjelisa Zaitun Hasibuan ◽  
Ridha Wati

Objective: The objective of the study was to investigate the inhibitory activity of polyisoprenoids from Nypa fruticans leaves on the expression of cyclooxygenase 2 (COX-2) against colon cancer cells.Methods: Anticancer activity performed was tested by dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method on colon cancer cell WiDr. The expression of COX-2 was observed by the immunocytochemistry method.Result: Polyisoprenoids from N. fruticans leaves exhibit anticancer activity on WiDr cells through inhibition of COX-2 expression with IC50 180.186±7.16 μg/ml.Conclusions: This study showed that polyisoprenoids from N. fruticans leaves promise chemopreventive agents for colon cancer through COX-2 inhibition.


Sign in / Sign up

Export Citation Format

Share Document