scholarly journals Transmission Electron Microscopy of Centrioles, Basal Bodies and Flagella in Motile Male Gametes of Land Plants

BIO-PROTOCOL ◽  
2017 ◽  
Vol 7 (19) ◽  
Author(s):  
Karen Renzaglia ◽  
Renee Lopez ◽  
Jason Henry ◽  
Nicholas Flowers ◽  
Kevin Vaughn
1983 ◽  
Vol 61 (12) ◽  
pp. 2807-2815 ◽  
Author(s):  
W. Brockley Paterson ◽  
Patrick T. K. Woo

Trypanosoma myoti from the bat Myotis lucifugus was cultured in a diphasic blood-agar and saline medium and examined using transmission electron microscopy. Glutaraldehyde fixation revealed a pattern of kinetoplast DNA condensation in the epimastigote which is characteristic of the subgenus Schizotrypanum. Ferritin was used to demonstrate a functional cytostome–cytopharynx complex. Replication of the basal bodies, flagella, kinetoplast, and the nucleus during binary fission is described. Also present were cells which contain multiple sets of organelles and which undergo multiple fission. The ultrastructural features of Trypanosoma myoti resemble those of Trypanosoma cruzi.


2015 ◽  
Vol 27 (1) ◽  
pp. 222 ◽  
Author(s):  
L. Falchi ◽  
L. Bogliolo ◽  
G. Galleri ◽  
G. Vlachopoulou ◽  
O. Murrone ◽  
...  

In recent years, there has been increasing interest in nanoparticles, especially those widely present in our environment. Several studies have been performed to evaluate their potential toxic effect and their possible use for biomedical applications. Among others, cerium dioxide nanoparticles (nanoceria, CeO2 ENPs) have been recently investigated for their use in biomedicine, based on their potential antioxidant function, due to the presence of oxygen vacancies and redox transformations (Ce4+/Ce3+) occurring at the surface. However, little is known about the potential toxicity of nanoceria in the reproductive system and on gametes, and no information is available with regard to its biocompatibility and potential toxicity on male gametes. The aim of the present study was to investigate effects of increasing doses of CeO2 ENPs on ram spermatozoa during 24 h storage at 4°C, based on assessment of main kinematic parameters, membranes and DNA integrity, ROS production, mitochondrial activity, and CeO2 intracellular uptake. The ejaculates of 3 rams of proven fertility were pooled and incubated with increasing doses of nanoceria (0, 22, 44, and 220 µg mL–1) up to 24 h at 4°C. The experiment was conducted in 4 replicates. At 0, 2, and 24 h of incubation, the 4 groups were submitted to the following analyses: i) main kinematic parameters (total motility and progressive motility) through CASA (computer-assisted sperm analysis); ii) acrosome and membrane integrity (propidium iodide + Pisum sativum agglutinin staining, PI+PSA); iii) flow cytometry for sperm chromatin structure assay (SCSA, acridine orange staining), mitochondrial activity (Mitotracker Orange), and ROS production (H2DCFDA). Moreover, an aliquot of semen from each group in each time step was fixed and processed for transmission electron microscopy to assess intracellular uptake of CeO2 nanoparticles by spermatozoa. Increasing concentrations of nanoceria did not affect the main kinematic parameters of ram semen; there were no differences in total and progressive motility among groups at any time point during the 24 h of incubation (P > 0.05). Integrity of the acrosome and cytoplasmic membranes, assessed through PI+PSA staining, was not affected by nanoceria in any group (P > 0.05). Moreover, exposure to nanoparticles did not increase DNA fragmentation (P > 0.05), and there was no difference in the amount of ROS produced and mitochondrial activity within the 24 h of incubation with nanoceria (P > 0.05). Absence of internalization of the nanoparticles by spermatozoa and occasional interaction between the sperm surface and nanoceria were observed by transmission electron microscopy analysis. In the present study, exposure of ram spermatozoa to increasing doses of nanoceria was not cytotoxic; furthermore, high concentrations of these nanoparticles were well tolerated. These data open new perspectives on the biomedical use of nanoceria and provide more information about their impact on male gametes.


1973 ◽  
Vol 56 (2) ◽  
pp. 441-457 ◽  
Author(s):  
Norman E. Williams ◽  
Joseph Frankel

The coupled resorption and redifferentiation of oral structures which occurs in Tetrahymena pyriformis under conditions of amino acid deprivation has been studied by transmission electron microscopy. Two patterns of ciliary resorption have been found, (a) in situ, and (b) after withdrawal into the cytoplasm. No autophagic vacuoles containing cilia or ciliary axonemes have been seen. Stomatogenic field basal bodies arise by a process of rapid sequential nucleation, with new ones always appearing next to more mature ones, even though the latter may not be fully differentiated. Accessory radial ribbons of microtubules develop immediately adjacent to oral field basal bodies as a late step in their maturation. It can be seen that the formation of basal bodies and their orientation within the oral complex are separate processes. This is true for about 130 of the approximately 170 oral basal bodies; the remaining 40 or so form within the patterned groups of ciliary units as a later event. Clusters of randomly oriented thin-walled microtubules are found surrounding oral basal bodies at all times during stomatogenesis. They may either represent stores of microtubule subunit protein, or serve as effectors of basal body movement during their orientation into pattern.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Sign in / Sign up

Export Citation Format

Share Document