A relative of the approachability ideal, diamond and non-saturation

2010 ◽  
Vol 75 (3) ◽  
pp. 1035-1065 ◽  
Author(s):  
Assaf Rinot

AbstractLet λ denote a singular cardinal. Zeman, improving a previous result of Shelah, proved that together with 2λ = λ+ implies ⋄S for every S ⊆ λ+ that reflects stationarily often.In this paper, for a set S ⊆ λ+, a normal subideal of the weak approachability ideal is introduced, and denoted by I[S; λ]. We say that the ideal is fat if it contains a stationary set. It is proved:1. if I[S; λ] is fat, then NSλ + ∣ S is non-saturated;2. if I[S; λ] is fat and 2λ = λ+, then ⋄S holds;3. implies that I[S; λ] is fat for every S ⊆ λ+ that reflects stationarily often;4. it is relatively consistent with the existence of a supercompact cardinal that fails, while I[S; λ] is fat for every stationary S ⊆ λ+ that reflects stationarily often.The stronger principle is studied as well.

2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2003 ◽  
Vol 68 (2) ◽  
pp. 637-643 ◽  
Author(s):  
James Cummings ◽  
Matthew Foreman ◽  
Menachem Magidor

This note proves two theorems. The first is that it is consistent to have for every n, but not have . This is done by carefully collapsing a supercompact cardinal and adding square sequences to each ωn. The crux of the proof is that in the resulting model every stationary subset of ℵω+1 ⋂ cof(ω) reflects to an ordinal of cofinality ω1, that is to say it has stationary intersection with such an ordinal.This result contrasts with compactness properties of square shown in [3]. In that paper it is shown that if one has square at every ωn, then there is a square type sequence on the points of cofinality ωk, k > 1 in ℵω+1. In particular at points of cofinality greater than ω1 there is a strongly non-reflecting stationary set of points of countable cofinality.The second result answers a question of Džamonja, by showing that there can be no squarelike sequence above a supercompact cardinal, where “squarelike” means that one replaces the requirement that the cofinal sets be closed and unbounded by the requirement that they be stationary at all points of uncountable cofinality.


2021 ◽  
pp. 2150019
Author(s):  
Alejandro Poveda ◽  
Assaf Rinot ◽  
Dima Sinapova

In Part I of this series [5], we introduced a class of notions of forcing which we call [Formula: see text]-Prikry, and showed that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are [Formula: see text]-Prikry. We proved that given a [Formula: see text]-Prikry poset [Formula: see text] and a [Formula: see text]-name for a nonreflecting stationary set [Formula: see text], there exists a corresponding [Formula: see text]-Prikry poset that projects to [Formula: see text] and kills the stationarity of [Formula: see text]. In this paper, we develop a general scheme for iterating [Formula: see text]-Prikry posets, as well as verify that the Extender-based Prikry forcing is [Formula: see text]-Prikry. As an application, we blow-up the power of a countable limit of Laver-indestructible supercompact cardinals, and then iteratively kill all nonreflecting stationary subsets of its successor. This yields a model in which the singular cardinal hypothesis fails and simultaneous reflection of finite families of stationary sets holds.


2013 ◽  
Vol 14 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Hiroshi Sakai ◽  
Boban Veličković

AbstractWe study the consequences of stationary and semi-stationary set reflection. We show that the semi-stationary reflection principle implies the Singular Cardinal Hypothesis, the failure of the weak square principle, etc. We also consider two cardinal tree properties introduced recently by Weiss, and prove that they follow from stationary and semi-stationary set reflection augmented with a weak form of Martin’s Axiom. We also show that there are some differences between the two reflection principles, which suggests that stationary set reflection is analogous to supercompactness, whereas semi-stationary set reflection is analogous to strong compactness.


2003 ◽  
Vol 68 (2) ◽  
pp. 366-388 ◽  
Author(s):  
Mirna Džamonja ◽  
Saharon Shelah

AbstractThe paper is concerned with the existence of a universal graph at the successor of a strong limit singular μ of cofinality ℵ0. Starting from the assumption of the existence of a supercompact cardinal, a model is built in which for some such μ there are μ++ graphs on μ+ that taken jointly are universal for the graphs on μ+, while .The paper also addresses the general problem of obtaining a framework for consistency results at the successor of a singular strong limit starting from the assumption that a supercompact cardinal κ exists. The result on the existence of universal graphs is obtained as a specific application of a more general method.


1986 ◽  
Vol 51 (1) ◽  
pp. 147-151 ◽  
Author(s):  
Péter Komjáth

It was J. E. Baumgartner who in [1] proved that when a weakly compact cardinal is Lévy-collapsed to ω2 the new ω2 inherits some of the large cardinal properties; e.g. if S is a stationary set of ω-limits in ω2 then for some α < ω2, S ∩ α is stationary in α. Later S. Shelah extended this to the following theorem: if a supercompact cardinal κ is Lévy-collapsed to ω2, then in the resulting model the following holds: if S ⊆ λ is a stationary set of ω-limits and cf(λ) ≥ ω2 then there is an α. < λ such that S ∩ α is stationary in α, i.e. stationary reflection holds for countable cofinality (see [1] and [3]). These theorems are important prototypes of small cardinal compactness theorems; many applications and generalizations can be found in the literature. One might think that these results are true for sets with an uncountable cofinality μ as well, i.e. when an appropriate large cardinal is collapsed to μ++. Though this is true for Baumgartner's theorem, there remains a problem with Shelah's result. The point is that the lemma stating that a stationary set of ω-limits remains stationary after forcing with an ω2-closed partial order may be false in the case of μ-limits in a cardinal of the form λ+ with cf(λ) < μ, as was shown in [8] by Shelah. The problem has recently been solved by Baumgartner, who observed that if a universal box-sequence on the class of those ordinals with cofinality ≤ μ exists, the lemma still holds, and a universal box-sequence of the above type can be added without destroying supercompact cardinals beyond μ.


Author(s):  
M.S. Shahrabadi ◽  
T. Yamamoto

The technique of labeling of macromolecules with ferritin conjugated antibody has been successfully used for extracellular antigen by means of staining the specimen with conjugate prior to fixation and embedding. However, the ideal method to determine the location of intracellular antigen would be to do the antigen-antibody reaction in thin sections. This technique contains inherent problems such as the destruction of antigenic determinants during fixation or embedding and the non-specific attachment of conjugate to the embedding media. Certain embedding media such as polyampholytes (2) or cross-linked bovine serum albumin (3) have been introduced to overcome some of these problems.


Author(s):  
R. A. Crowther

The reconstruction of a three-dimensional image of a specimen from a set of electron micrographs reduces, under certain assumptions about the imaging process in the microscope, to the mathematical problem of reconstructing a density distribution from a set of its plane projections.In the absence of noise we can formulate a purely geometrical criterion, which, for a general object, fixes the resolution attainable from a given finite number of views in terms of the size of the object. For simplicity we take the ideal case of projections collected by a series of m equally spaced tilts about a single axis.


Author(s):  
R. Beeuwkes ◽  
A. Saubermann ◽  
P. Echlin ◽  
S. Churchill

Fifteen years ago, Hall described clearly the advantages of the thin section approach to biological x-ray microanalysis, and described clearly the ratio method for quantitive analysis in such preparations. In this now classic paper, he also made it clear that the ideal method of sample preparation would involve only freezing and sectioning at low temperature. Subsequently, Hall and his coworkers, as well as others, have applied themselves to the task of direct x-ray microanalysis of frozen sections. To achieve this goal, different methodological approachs have been developed as different groups sought solutions to a common group of technical problems. This report describes some of these problems and indicates the specific approaches and procedures developed by our group in order to overcome them. We acknowledge that the techniques evolved by our group are quite different from earlier approaches to cryomicrotomy and sample handling, hence the title of our paper. However, such departures from tradition have been based upon our attempt to apply basic physical principles to the processes involved. We feel we have demonstrated that such a break with tradition has valuable consequences.


Author(s):  
G. Van Tendeloo ◽  
J. Van Landuyt ◽  
S. Amelinckx

Polytypism has been studied for a number of years and a wide variety of stacking sequences has been detected and analysed. SiC is the prototype material in this respect; see e.g. Electron microscopy under high resolution conditions when combined with x-ray measurements is a very powerful technique to elucidate the correct stacking sequence or to study polytype transformations and deviations from the ideal stacking sequence.


Sign in / Sign up

Export Citation Format

Share Document