scholarly journals A Computational Approach to Predict the Molecular Drug Targets Against Candida glabrata

2021 ◽  
Vol 14 (4) ◽  
pp. 1946-1955
Author(s):  
Priyanka Sirari

Non- albicans Candida (NAC) species are responsible for 35-65% of all candidaemias in the general population and are associated with a high rate of morbidity and mortality (about 15% to 35%). The availability of few commercially used antifungal drugs against candidiasis and rapid emergences of antibiotic resistance among NAC species has significantly contributed to their increased global outbreak. Green tea is known for its multi-beneficial effects including antimicrobial potential against Candida. The present study investigated the molecular drug targets of green tea phytocompounds against inhibition of ergosterol biosynthesis in Candida glabrata using in silico tools.The molecular interaction was studied between ligands and essential proteins participating in ergosterol biosynthesis in C. glabrata using autodockvina software. The protein validation and homology modeling estimation were determined by the SWISS MODEL workspace. The Drug likeness study of all the test ligands was performed using SwissADME, while the toxicity of test compounds was analyzed using the admetSAR 2.0 version.The in silico analyses identified Rutin, Chlorogenic acid, Coumaroylquinic acid, Quercetin, Epigallocatechingallate as the potent phytocompounds with significant molecular binding with Erg 6, Erg 27, Erg 8, Erg 7, Erg 24 respectively. The ADMET data suggested an absence of the CYP2 inhibitors indicating the metabolism of all the tested drug candidates in the intestine and liver.The present study highlighted the possible drug targets of green tea phytocompounds against ergosterol biosynthesis protein in C. glabrata. It is pertinent that the current study has provided preliminary breakthroughs which could lead to exploring their avenues in potent drug development against NAC species.

2021 ◽  
Vol 12 (3) ◽  
pp. 1793-1797
Author(s):  
Priyanka Sirari ◽  
Jigisha Anand ◽  
Devvret ◽  
Ashish Thapliyal ◽  
Nishant Rai

Green tea is credited as one of the world’s healthiest drinks with enriched antioxidants. It is known for its multi-beneficial health benefits against diabetes, blood pressure, hypertension, gastro-intestinal upset and is bestowed with significant antimicrobial potential. There are previous scientific evidence highlighting the antifungal potential of green tea and has identified it as a potential inhibitor of non-albicans Candida species. Lansterol 14-α demethylase (Erg 11) or CYP51 protein belongs to the cytochrome P450 monooxygenase (CYP) superfamily. Erg 11 is involved in ergosterol biosynthesis and has a significant role in azole drug resistance in Candida glabrata. The present study attempted to identify the inhibitory potential of green tea phytocompounds against inhibition of Erg 11 in Candida glabrata using bioinformatics tool viz., autodock vina software. Out of 15 green tea phytocompounds investigated, the study identified, Rutin (-10.5 kcal) Kaempferitrin (-9.4kcal), Epigallocatechin gallate (-10kcal), Epicatechin gallate (-8.7kcal), and Coumaroylquinic acid (-8.6kcal) acid as the potent phytocompounds which showed significant molecular interaction with Erg 11 in Candida glabrata. In attribution to the constant emergence of azole-resistant isolates, this preliminary analysis therefore, indicated the potential of green tea phytocompounds against inhibition of non-albicans Candida specific candidiasis. However, further, in vitro antimicrobial efficacy of these phytocompounds, the dose regime, drug likeliness, and cytotoxic analysis are required to be investigated and validated.


2021 ◽  
Author(s):  
Tomye L Ollinger ◽  
Bao Vu ◽  
Daniel Murante ◽  
Josie Parker ◽  
Lucia Simonicova ◽  
...  

Two of the major classes of antifungal drugs in clinical use target ergosterol biosynthesis. Despite its importance, our understanding of the transcriptional regulation of ergosterol biosynthesis genes in pathogenic fungi is essentially limited to the role of hypoxia and sterol-stress induced transcription factors such as Upc2 and Upc2A as well as homologs of Sterol Response Element Binding (SREB) factors. To identify additional regulators of ergosterol biosynthesis in Candida glabrata, an important human fungal pathogen with reduced susceptibility to ergosterol biosynthesis inhibitors relative to other Candida spp., we used a serial passaging strategy to isolate suppressors of the fluconazole hypersusceptibility of a upc2AΔ deletion mutant. This led to the identification of loss of function mutants in two genes: ROX1, the homolog of a hypoxia gene transcriptional suppressor in Saccharomyces cerevisiae, and CST6, a transcription factor that is involved in the regulation of carbon dioxide response in C. glabrata. Here, we describe a detailed analysis of the genetic interaction of ROX1 and UPC2A. In the presence of fluconazole, loss of Rox1 function restores ERG11 expression to the upc2AΔ mutant and inhibits the expression of ERG3 and ERG6, leading to increased levels or ergosterol and decreased levels of the toxic sterol, 14α methyl-ergosta-8,24(28)-dien-3β, 6α-diol, relative to upc2AΔ. Our observations establish that Rox1 is a negative regulator of ERG gene biosynthesis and indicate that a least one additional positive transcriptional regulator of ERG gene biosynthesis must be present in C. glabrata.


2021 ◽  
Author(s):  
Bao Vu ◽  
W. Scott Moye-Rowley

Azoles remain the most common used antifungal drugs for invasive candidiasis worldwide. They specifically inhibit the fungal lanosterol a-14 demethylase enzyme, which is commonly referred to as Erg11 in fungi. Inhibition of Erg11 ultimately leads to a reduction in ergosterol production, an essential fungal membrane sterol. Many Candida species, such as Candida albicans, develop mutations in this enzyme which reduces the azole binding affinity and results in increased azole resistance. Candida glabrata is also a pathogenic yeast that has a low intrinsic susceptibility to azole drugs and easily develops elevated resistance. These azole resistant mutations are almost exclusively found to cause hyperactivity of the Pdr1 transcription factor and rarely lie within the ERG11 gene. Here, we generated C. glabrata ERG11 mutations that were analogous to azole resistance associated mutations in C. albicans ERG11. Three different Erg11 forms (Y141H, S410F, and the corresponding double mutant (DM)) conferred azole resistance in C. glabrata with the DM Erg11 form causing the strongest phenotype. The DM Erg11 also induced cross-resistance to amphotericin B and caspofungin. The azole resistance caused by the DM allele of ERG11 imposed a fitness cost that was not observed with hyperactive PDR1 alleles. These data support the view that C. glabrata does not typically acquire ERG11 mutations owing to growth defects associated with these lesions while hyperactive PDR1 alleles have no obvious growth issues. Understanding the physiology linking ergosterol biosynthesis with Pdr1-mediated regulation of azole resistance is crucial for ensuring the continued efficacy of azole drugs against C. glabrata.


2020 ◽  
Vol 17 (1) ◽  
pp. 40-59
Author(s):  
Malamati Kourti ◽  
Jun Cai ◽  
Wen Jiang ◽  
Andrew D. Westwell

Purpose: Carbon monoxide-releasing molecules (CORMs) are a special class of organometallic complexes that have been reported to offer beneficial effects against different conditions including several subtypes of cancer. Especially for the aggressive and poorly treated triplenegative breast cancer (TNBC), early CORMs have been shown to diminish malignant angiogenesis and may be considered as an alternative approach. So, this study aimed at testing novel CORM molecules against angiogenesis in TNBC seeking potent drug candidates for new therapies. Methods: Based on previous studies, CORM-3 was chosen as the lead compound and a group of 15 new ruthenium-based CORMs was synthesized and subsequently evaluated in vitro for potential anti-angiogenic properties. Results: A similar anti-angiogenic behaviour to the lead complex was observed and a new CORM, complex 4, emerged as a promising agent from this study. Specifically, this complex offered better inhibition of the activation of VEGFR2 and other downstream proteins of vascular endothelial cells. Complex 4 also retained the ability of the parent molecule to reduce the upregulated VEGF expression from TNBC cells and inhibit endothelial cell migration and new vessel formation. The lack of significant cytotoxicity and the downregulating activity over the cytoprotective enzyme haem oxygenase-1 (HO-1) in cancer cells may also favour CORMs against this poorly treated subtype of breast cancer. Conclusions: Since the anti-angiogenic approach is one of the few available targeted strategies against TNBC, both CORM-3 and the new complex 4 should be considered for further research as combination agents with existing anti-angiogenic drugs for more effective treatment of malignant angiogenesis in TNBC.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5124 ◽  
Author(s):  
Salvatore Galati ◽  
Miriana Di Stefano ◽  
Elisa Martinelli ◽  
Giulio Poli ◽  
Tiziano Tuccinardi

In silico target fishing, whose aim is to identify possible protein targets for a query molecule, is an emerging approach used in drug discovery due its wide variety of applications. This strategy allows the clarification of mechanism of action and biological activities of compounds whose target is still unknown. Moreover, target fishing can be employed for the identification of off targets of drug candidates, thus recognizing and preventing their possible adverse effects. For these reasons, target fishing has increasingly become a key approach for polypharmacology, drug repurposing, and the identification of new drug targets. While experimental target fishing can be lengthy and difficult to implement, due to the plethora of interactions that may occur for a single small-molecule with different protein targets, an in silico approach can be quicker, less expensive, more efficient for specific protein structures, and thus easier to employ. Moreover, the possibility to use it in combination with docking and virtual screening studies, as well as the increasing number of web-based tools that have been recently developed, make target fishing a more appealing method for drug discovery. It is especially worth underlining the increasing implementation of machine learning in this field, both as a main target fishing approach and as a further development of already applied strategies. This review reports on the main in silico target fishing strategies, belonging to both ligand-based and receptor-based approaches, developed and applied in the last years, with a particular attention to the different web tools freely accessible by the scientific community for performing target fishing studies.


mSphere ◽  
2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Tomye L. Ollinger ◽  
Bao Vu ◽  
Daniel Murante ◽  
Josie E. Parker ◽  
Lucia Simonicova ◽  
...  

Candida glabrata is one of the most important human fungal pathogens and has reduced susceptibility to azole-class inhibitors of ergosterol biosynthesis. Although ergosterol is the target of two of the three classes of antifungal drugs, relatively little is known about the regulation of this critical cellular pathway.


2021 ◽  
Vol 15 (3) ◽  
pp. e0009226
Author(s):  
Hugo R. Vaca ◽  
Ana M. Celentano ◽  
María Agustina Toscanini ◽  
Tino Heimburg ◽  
Ehab Ghazy ◽  
...  

Background Echinococcosis and cysticercosis are neglected tropical diseases caused by cestode parasites (family Taeniidae). Not only there is a small number of approved anthelmintics for the treatment of these cestodiases, but also some of them are not highly effective against larval stages, such that identifying novel drug targets and their associated compounds is critical. Histone deacetylase (HDAC) enzymes are validated drug targets in cancers and other diseases, and have been gaining relevance for developing new potential anti-parasitic treatments in the last years. Here, we present the anthelmintic profile for a panel of recently developed HDAC inhibitors against the model cestode Mesocestoides vogae (syn. M. corti). Methodology/Principal findings Phenotypic screening was performed on M. vogae by motility measurements and optical microscopic observations. Some HDAC inhibitors showed potent anthelmintic activities; three of them–entinostat, TH65, and TH92 –had pronounced anthelmintic effects, reducing parasite viability by ~100% at concentrations of ≤ 20 μM. These compounds were selected for further characterization and showed anthelmintic effects in the micromolar range and in a time- and dose-dependent manner. Moreover, these compounds induced major alterations on the morphology and ultrastructural features of M. vogae. The potencies of these compounds were higher than albendazole and the anthelmintic effects were irreversible. Additionally, we evaluated pairwise drug combinations of these HDAC inhibitors and albendazole. The results suggested a positive interaction in the anthelmintic effect for individual pairs of compounds. Due to the maximum dose approved for entinostat, adjustments in the dose regime and/or combinations with currently-used anthelmintic drugs are needed, and the selectivity of TH65 and TH92 towards parasite targets should be assessed. Conclusion, significance The results presented here suggest that HDAC inhibitors represent novel and potent drug candidates against cestodes and pave the way to understanding the roles of HDACs in these parasites.


Author(s):  
Bao Gia Vu ◽  
W. Scott Moye-Rowley

Azoles, the most commonly used antifungal drugs, specifically inhibit the fungal lanosterol α-14 demethylase enzyme, which is referred to as Erg11. Inhibition of Erg11 ultimately leads to a reduction in ergosterol production, an essential fungal membrane sterol. Many Candida species, such as Candida albicans , develop mutations in this enzyme which reduces the azole binding affinity and results in increased resistance. Candida glabrata is also a pathogenic yeast that has low intrinsic susceptibility to azole drugs and easily develops elevated resistance. In C. glabrata , these azole resistant mutations typically cause hyperactivity of the Pdr1 transcription factor and rarely lie within the ERG11 gene. Here, we generated C. glabrata ERG11 mutations that were analogous to azole resistance alleles from C. albicans ERG11 . Three different Erg11 forms (Y141H, S410F, and the corresponding double mutant (DM)) conferred azole resistance in C. glabrata with the DM Erg11 form causing the strongest phenotype. The DM Erg11 also induced cross-resistance to amphotericin B and caspofungin. Resistance caused by the DM allele of ERG11 imposed a fitness cost that was not observed with hyperactive PDR1 alleles. Crucially, the presence of the DM ERG11 allele was sufficient to activate the Pdr1 transcription factor in the absence of azole drugs. Our data indicate that azole resistance linked to changes in ERG11 activity can involve cellular effects beyond an alteration in this key azole target enzyme. Understanding the physiology linking ergosterol biosynthesis with Pdr1-mediated regulation of azole resistance is crucial for ensuring the continued efficacy of azole drugs against C. glabrata .


Author(s):  
Shashank Shekhar Mishra ◽  
Chandra Shekhar Sharma ◽  
Hemendra Pratap Singh ◽  
Harshda Pandiya ◽  
Neeraj Kumar

Tuberculosis, one of the most frequent infectious diseases, is caused by a mycobacterium tuberculosis bacteria and it infects several hundred million people each year, results in several million deaths annually. Because there is development of antibiotic resistance, the disease becomes incurable. So, in the absence of effective and potent drug with minimal resistance problems, the mortality rate increases annually. In this computational investigation, we performed In-silico ADME, bioactivity and toxicity parameters calculation of some selected anti-tuberculosis agents. To design a new molecule having good pharmacological profile, this study will provide the lead information.Key Words: Tuberculosis (TB), Bacillus Calmette-Guerin vaccine, TPSA, In Silico toxicity


Sign in / Sign up

Export Citation Format

Share Document