scholarly journals Gravity induced flow to characterize rheological properties of printable cement-based materials

2020 ◽  
Vol 5 ◽  
pp. 150-156
Author(s):  
Yohan Jacquet ◽  
Vincent Picandet ◽  
Damien Rangeard ◽  
Arnaud Perrot

This paper presents testing methods based on the deformation and fracture of fresh cementitious materials only subjected to their own weight. These new methods are dedicated to the study of cementitious materials designed for 3D printing of concrete in order to verify rheological requirements related to the process. The first testing methods consists in measuring the tip deflection of a fresh cementitious materials, horizontally extruded, and allows for the determination of apparent elastic modulus of the material, while the second test consists in measuring the tensile strength of material filament leaving the nozzle of a vertical downward extruder. Both methods are based on the video capture of the deformation of the materials loaded by gravity, and provide results that are in agreement with tests performed with conventional testing machines (tensile and unconfined compression tests). This work shows the potential of the video capture of the gravity induced deformation of cementitious materials to describe behavior of cementitious materials at fresh state or for the in-line control of the 3D concrete printing process.

Author(s):  
Eugene T. Kepich ◽  
Roger C. Haut

Effective Poisson’s ratio (EPR) of articular cartilage in compression is an important parameter, which is inversely correlated with stiffness of the collagen fibers [1]; and thus, if known, could provide valuable information about integrity of the collagen network in the tissue. Unfortunately, direct determination of the EPR by measuring lateral expansion during unconfined compression tests [2], while being effective, due to it’s destructive nature many times is not desired and/or hard to apply in practice. Optically-determined values of equilibrium EPR for bovine humeral articular cartilage using this method are reported to be in range 0.185±0.0065.


Author(s):  
Jayant Kumar Dahre

Abstract: This Paper describes the beneficial impact of reinforcing the sub-grade layer with a single layerof geo-grid at different positions and thereby determination of optimum position of reinforcement layer. The( best) optimum position was determined based on California Bearing Ratio (CBR value) and unconfined compression tests were conducted to decide the optimum position of geo-grid. The CBR value of a soil increases by 50-100% when it is reinforced with a single layer of geogrid. The amount of development (Improvement) depends upon the type of soil and position of geo-grid. CBR of sub-grade soil is 6.53% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 19.66%. Soaked Condition CBR of sub-grade soil is 4.77% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 4.46%. Keywords: Pavement, Geo-grid, Reinforced, Sub-grade, CBR, Filtration, Reinforcing


1997 ◽  
Vol 36 (11) ◽  
pp. 101-106 ◽  
Author(s):  
January Bien ◽  
Lidia Wolny

Studies of sewage sludge conditioning by ultrasonic field concentrate on determination of the increase of water removal effect, which depends on kind of sludge and chemical compounds used in the dewatering process. An attempt was made to find new methods of sludge preparation before dewatering. Tests presented here focused on digested and difficult dewatered sludge. The sludge was dewatered on a vacuum filter after conditioning with polyelectrolytes and the ultrasonic field. The microscopic analysis was an additional criterion to evaluate changes in the sludge structure after preparation. The polyelectrolyte dose of 3 mg/g d.m. sonicated within 15 sec. resulted in the 50% decrease of sludge volume. Results presented confirmed our previous experiences, concerning the relation between conglomerates of sludge and the effect of dewatering.


2021 ◽  
Author(s):  
Eryn Nelson ◽  
Jeffrey S. S. K. Formen ◽  
Christian Wolf

The widespread occurrence and significance of chiral compounds does not only require new methods for their enantioselective synthesis but also efficient tools that allow rapid determination of the absolute configuration,...


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3509
Author(s):  
Paule Marcoux-Valiquette ◽  
Cécile Darviot ◽  
Lu Wang ◽  
Andrée-Anne Grosset ◽  
Morteza Hasanzadeh Kafshgari ◽  
...  

Reliable cytopathological diagnosis requires new methods and approaches for the rapid and accurate determination of all cell types. This is especially important when the number of cells is limited, such as in the cytological samples of fine-needle biopsy. Immunoplasmonic-multiplexed- labeling may be one of the emerging solutions to such problems. However, to be accepted and used by the practicing pathologists, new methods must be compatible and complementary with existing cytopathology approaches where counterstaining is central to the correct interpretation of immunolabeling. In addition, the optical detection and imaging setup for immunoplasmonic-multiplexed-labeling must be implemented on the same cytopathological microscope, not interfere with standard H&E imaging, and operate as a second easy-to-use imaging method. In this article, we present multiplex imaging of four types of nanoplasmonic markers on two types of H&E-stained cytological specimens (formalin-fixed paraffin embedded and non-embedded adherent cancer cells) using a specially designed adapter for SI dark-field microscopy. The obtained results confirm the effectiveness of the proposed optical method for quantitative and multiplex identification of various plasmonic NPs, and the possibility of using immunoplasmonic-multiplexed-labeling for cytopathological diagnostics.


Sign in / Sign up

Export Citation Format

Share Document